This work is based on a direct current(DC)natural current commutation topology,which uses load-carrying branch contacts carrying rated current and multiple sets of series arcing branch contacts in parallel to achieve ...This work is based on a direct current(DC)natural current commutation topology,which uses load-carrying branch contacts carrying rated current and multiple sets of series arcing branch contacts in parallel to achieve circuit breaking.The proposed topology can meet the new requirements of higher voltage DC switches in aviation,aerospace,energy and other fields.First,a magneto-hydrodynamic arc model is built using COMSOL Multiphysics,and the different arc breaking characteristics of the arcing branch contacts in different gas environments are simulated.Then,a voltage uniformity coefficient is used to measure the voltage sharing effect in the process of dynamic interruption.In order to solve the dispersion of arcing contact action,a structural control method is adopted to improve the voltage uniformity coefficient.The uniform voltage distribution can improve the breaking capacity and electrical life of the series connection structure.展开更多
Natural convection flow in enclosure has different applications such as room ventilation, heat exchangers, the cooling system of a building etc. The Finite-Element method based on the Galerkin weighted residual approa...Natural convection flow in enclosure has different applications such as room ventilation, heat exchangers, the cooling system of a building etc. The Finite-Element method based on the Galerkin weighted residual approach is used to solve two-dimensional governing mass, momentum and energy-equations for natural convection flow in the presence of a magnetic field on a roof top with semi-circular heater. In the enclosure the horizontal lower wall was heated, the vertical two walls were adiabatic, inside the semi-circular heater, the wavy top wall cooled. The parameters Rayleigh number, Hartmann number and Prandtl number are considered. The effects of the Hartmann number and Rayleigh number on the streamlines, isotherms, velocity profiles and average Nusselt number are examined graphically. The local Nusselt number and the average Nusselt number of the heated portion of the enclosure with the semi-circular heater are presented in this paper. Finally, for the validation of the existing work, the current results are compared with published results and the auspicious agreement is achieved.展开更多
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob...In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.展开更多
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend...The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.展开更多
The idea of fractional derivatives is applied to several problems of viscoelastic fluid.However,most of these problems(fluid problems),were studied analytically using different integral transform techniques,as most of...The idea of fractional derivatives is applied to several problems of viscoelastic fluid.However,most of these problems(fluid problems),were studied analytically using different integral transform techniques,as most of these problems are linear.The idea of the above fractional derivatives is rarely applied to fluid problems governed by nonlinear partial differential equations.Most importantly,in the nonlinear problems,either the fractional models are developed by artificial replacement of the classical derivatives with fractional derivatives or simple classical problems(without developing the fractional model even using artificial replacement)are solved.These problems were mostly solved for steady-state fluid problems.In the present article,studied unsteady nonlinear non-Newtonian fluid problem(Cattaneo-Friedrich Maxwell(CFM)model)and the fractional model are developed starting from the fractional constitutive equations to the fractional governing equations;in other words,the artificial replacement of the classical derivatives with fractional derivatives is not done,but in details,the fractional problem is modeled from the fractional constitutive equations.More exactly two-dimensional magnetic resistive flow in a porous medium of fractional Maxwell fluid(FMF)over an inclined plate with variable velocity and the temperature is studied.The Caputo time-fractional derivative model(CFM)is used in the governing equations.The proposed model is numerically solved via finite difference method(FDM)along with L1-scheme for discretization.The numerical results are presented in various figures.These results indicated that the fractional parameters significantly affect the temperature and velocity fields.It is noticed that the temperature field increased with an increase in the fractional parameter.Whereas,the effect of fractional parameters is opposite on the velocity field near the plate.However,this trend became like that of the temperature profile,away from the plate.Moreover,the velocity field retarded with strengthening in the magnetic parameter due to enhancement in Lorentz force.However,this effect reverses in the case of the temperature profile.展开更多
The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximat...The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.展开更多
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current...We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.展开更多
The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional...The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.展开更多
In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-co...In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results.展开更多
In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamicall...In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.展开更多
This paper focuses on the simulation of a fault arc in a closed tank based on the magneto-hydrodynamic (MHD) method, in which a comparative study of three radiation models, including net emission coefficients (NEC...This paper focuses on the simulation of a fault arc in a closed tank based on the magneto-hydrodynamic (MHD) method, in which a comparative study of three radiation models, including net emission coefficients (NEC), semi-empirical model based on NEC as well as the P1 model, is developed. The pressure rise calculated by the three radiation models are compared to the measured results. Particularly when the senti-empirical model is used, the effect of different boundary temperatures of the re-absorption layer in the semi-empirical model on pressure rise is concentrated on. The results show that the re-absorption effect in the low-temperature region affects radiation transfer of fault arcs evidently, and thus the internal pressure rise. Compared with the NEC model, P1 and the semi-empirical model with 0.7 〈 α 〈 0.83 are more suitable to calculate the pressure rise of the fault arc, where is an adjusted parameter involving the boundary temperature of the re-absorption region in the semi-empirical model.展开更多
基金National Natural Science Foundation of China(No.51977002)the Third International Symposium on Insulation and Discharge Computation for Power Equipment(IDCOMPU2021).
文摘This work is based on a direct current(DC)natural current commutation topology,which uses load-carrying branch contacts carrying rated current and multiple sets of series arcing branch contacts in parallel to achieve circuit breaking.The proposed topology can meet the new requirements of higher voltage DC switches in aviation,aerospace,energy and other fields.First,a magneto-hydrodynamic arc model is built using COMSOL Multiphysics,and the different arc breaking characteristics of the arcing branch contacts in different gas environments are simulated.Then,a voltage uniformity coefficient is used to measure the voltage sharing effect in the process of dynamic interruption.In order to solve the dispersion of arcing contact action,a structural control method is adopted to improve the voltage uniformity coefficient.The uniform voltage distribution can improve the breaking capacity and electrical life of the series connection structure.
文摘Natural convection flow in enclosure has different applications such as room ventilation, heat exchangers, the cooling system of a building etc. The Finite-Element method based on the Galerkin weighted residual approach is used to solve two-dimensional governing mass, momentum and energy-equations for natural convection flow in the presence of a magnetic field on a roof top with semi-circular heater. In the enclosure the horizontal lower wall was heated, the vertical two walls were adiabatic, inside the semi-circular heater, the wavy top wall cooled. The parameters Rayleigh number, Hartmann number and Prandtl number are considered. The effects of the Hartmann number and Rayleigh number on the streamlines, isotherms, velocity profiles and average Nusselt number are examined graphically. The local Nusselt number and the average Nusselt number of the heated portion of the enclosure with the semi-circular heater are presented in this paper. Finally, for the validation of the existing work, the current results are compared with published results and the auspicious agreement is achieved.
文摘In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.
文摘The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.
基金The authors would like to acknowledge Ministry of Education(MOE)and Research Management Centre-UTM,Universiti Teknologi Malaysia(UTM)for financial support through vote numbers 5F004,5F278,07G70,07G72,07G76,07G77 and 08G33 for this research.
文摘The idea of fractional derivatives is applied to several problems of viscoelastic fluid.However,most of these problems(fluid problems),were studied analytically using different integral transform techniques,as most of these problems are linear.The idea of the above fractional derivatives is rarely applied to fluid problems governed by nonlinear partial differential equations.Most importantly,in the nonlinear problems,either the fractional models are developed by artificial replacement of the classical derivatives with fractional derivatives or simple classical problems(without developing the fractional model even using artificial replacement)are solved.These problems were mostly solved for steady-state fluid problems.In the present article,studied unsteady nonlinear non-Newtonian fluid problem(Cattaneo-Friedrich Maxwell(CFM)model)and the fractional model are developed starting from the fractional constitutive equations to the fractional governing equations;in other words,the artificial replacement of the classical derivatives with fractional derivatives is not done,but in details,the fractional problem is modeled from the fractional constitutive equations.More exactly two-dimensional magnetic resistive flow in a porous medium of fractional Maxwell fluid(FMF)over an inclined plate with variable velocity and the temperature is studied.The Caputo time-fractional derivative model(CFM)is used in the governing equations.The proposed model is numerically solved via finite difference method(FDM)along with L1-scheme for discretization.The numerical results are presented in various figures.These results indicated that the fractional parameters significantly affect the temperature and velocity fields.It is noticed that the temperature field increased with an increase in the fractional parameter.Whereas,the effect of fractional parameters is opposite on the velocity field near the plate.However,this trend became like that of the temperature profile,away from the plate.Moreover,the velocity field retarded with strengthening in the magnetic parameter due to enhancement in Lorentz force.However,this effect reverses in the case of the temperature profile.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071159) and the College Science Research Project of Inner Mongolia, China (Grant No. NJzy08180).
文摘The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.
文摘We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.12250410244,11872151)the Jiangsu Province Education Development Special Project-2022 for Double First-ClassSchool Talent Start-up Fund of China(No.2022r109)the Longshan Scholar Program of Jiangsu Province of China。
文摘The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.
基金supported by the Sichuan Science and Technology Program (No. 2024NSFSC0867)National Natural Science Foundation of China (No. 52377157)。
文摘In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results.
文摘In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.
基金supported by National Key Basic Research Program of China(973 Program)(No.2015CB251002)National Natural Science Foundation of China(Nos.51221005,51177124)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Program for New Century Excellent Talents in UniversityShaanxi Province Natural Science Foundation of China(No.2013JM-7010)
文摘This paper focuses on the simulation of a fault arc in a closed tank based on the magneto-hydrodynamic (MHD) method, in which a comparative study of three radiation models, including net emission coefficients (NEC), semi-empirical model based on NEC as well as the P1 model, is developed. The pressure rise calculated by the three radiation models are compared to the measured results. Particularly when the senti-empirical model is used, the effect of different boundary temperatures of the re-absorption layer in the semi-empirical model on pressure rise is concentrated on. The results show that the re-absorption effect in the low-temperature region affects radiation transfer of fault arcs evidently, and thus the internal pressure rise. Compared with the NEC model, P1 and the semi-empirical model with 0.7 〈 α 〈 0.83 are more suitable to calculate the pressure rise of the fault arc, where is an adjusted parameter involving the boundary temperature of the re-absorption region in the semi-empirical model.