This paper introduces the fundamental principle and features ofmagneto-optical storage technol- ogy, and discuses the trend and aseries of key techniques for increasing the data storage density ofmagneto-opti- cal dis...This paper introduces the fundamental principle and features ofmagneto-optical storage technol- ogy, and discuses the trend and aseries of key techniques for increasing the data storage density ofmagneto-opti- cal disk. The three ways including MO media, recordingmethod and readout method for increasing the disk ca- pacity havebeen discussed. Moreover, the importance with the exchange-coupledeffect between the magnetic layers and recording domain morphology isemphasized.展开更多
Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. P...Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. Pores in the brine storage medium act as storage space and transmission channels of underground brine. Therefore, the porosity of brine storage medium determines its ability to store brine. In this study, Mahai Salt Lake was used as the research area as a modern saline lake located in the north area of the Qaidam Basin. A total of 100 porosity samples were collected from eight sampling points in two profiles of the research area at sampling depths of 1.30–314.78 m. The porosity distribution characteristics and influencing factors in brine storage medium were analysed according to the measured porosity data. Based on analysis of the pore structure characteristics, the brine storage medium contains intercrystalline pores, unlike conventional freshwater storage mediums. Moreover, the primary salt rock is susceptible to dissolution by lighter brine, facilitating the formation of secondary porosity. Due to the formation of secondary pores, a porosity greater than 20% remains even at buried depths greater than 100 m. Based on the geological statistical analysis, due to the geographic location, salt formation time, and depositional environment, the porosity values of Mahai Salt Lake do not exhibit a wider distribution, but also show more extreme values than a nearby salt lake. Based on the porosity characteristics by depth, due to the presence of secondary pores, flooding, stratigraphic static pressure, and other factors, porosity shows fluctuations with increasing depth.展开更多
Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical cons...Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical constraints,which have been derived in detail.Using reverse modelling,a medium satisfying the derived conditions is proven to store energy as the photon propagates from the entry to exit point.A single photon with a given intensity is considered in the analysis and hypothesized to possess a definite non-zero probability of maintaining its energy and velocity functions analytic inside the proposed optical medium,despite scattering,absorption,fluorescence,heat generation,and other nonlinear mechanisms.The energy and velocity functions are thus singly and doubly differentiable with respect to wavelength.The solution of the resulting second-order differential equation in two variables proves that energy storage or energy flotation occurs inside a medium with a refractive index satisfying the described mathematical constraints.The minimum-value-normalized refractive index profiles of the modelled optical medium for transformed wavelengths both inside the medium and for vacuum have been derived.Mathematical proofs,design equations,and detailed numerical analyses are presented in the paper.展开更多
This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage med...This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%.展开更多
文摘This paper introduces the fundamental principle and features ofmagneto-optical storage technol- ogy, and discuses the trend and aseries of key techniques for increasing the data storage density ofmagneto-opti- cal disk. The three ways including MO media, recordingmethod and readout method for increasing the disk ca- pacity havebeen discussed. Moreover, the importance with the exchange-coupledeffect between the magnetic layers and recording domain morphology isemphasized.
基金Under the auspices of The National Natural Science Fundation of China(No.41572216,41672243)The Water Resources Project of Jilin Province(No.0773-1441GNJL00390)+1 种基金The Natural Science Fundation of Jilin Province(No.20140101164JC)Science and Technology Support Program of Qinghai Province(No.2012-G-154A)
文摘Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. Pores in the brine storage medium act as storage space and transmission channels of underground brine. Therefore, the porosity of brine storage medium determines its ability to store brine. In this study, Mahai Salt Lake was used as the research area as a modern saline lake located in the north area of the Qaidam Basin. A total of 100 porosity samples were collected from eight sampling points in two profiles of the research area at sampling depths of 1.30–314.78 m. The porosity distribution characteristics and influencing factors in brine storage medium were analysed according to the measured porosity data. Based on analysis of the pore structure characteristics, the brine storage medium contains intercrystalline pores, unlike conventional freshwater storage mediums. Moreover, the primary salt rock is susceptible to dissolution by lighter brine, facilitating the formation of secondary porosity. Due to the formation of secondary pores, a porosity greater than 20% remains even at buried depths greater than 100 m. Based on the geological statistical analysis, due to the geographic location, salt formation time, and depositional environment, the porosity values of Mahai Salt Lake do not exhibit a wider distribution, but also show more extreme values than a nearby salt lake. Based on the porosity characteristics by depth, due to the presence of secondary pores, flooding, stratigraphic static pressure, and other factors, porosity shows fluctuations with increasing depth.
文摘Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical constraints,which have been derived in detail.Using reverse modelling,a medium satisfying the derived conditions is proven to store energy as the photon propagates from the entry to exit point.A single photon with a given intensity is considered in the analysis and hypothesized to possess a definite non-zero probability of maintaining its energy and velocity functions analytic inside the proposed optical medium,despite scattering,absorption,fluorescence,heat generation,and other nonlinear mechanisms.The energy and velocity functions are thus singly and doubly differentiable with respect to wavelength.The solution of the resulting second-order differential equation in two variables proves that energy storage or energy flotation occurs inside a medium with a refractive index satisfying the described mathematical constraints.The minimum-value-normalized refractive index profiles of the modelled optical medium for transformed wavelengths both inside the medium and for vacuum have been derived.Mathematical proofs,design equations,and detailed numerical analyses are presented in the paper.
基金funded by 2017 Research Project of Tianjin Sino-German University of Applied Sciences(Project No.zdkt2017-001)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2018KJ260)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2020ZD03).
文摘This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%.