We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coeffic...We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators.展开更多
Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancemen...Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.展开更多
The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-princip...The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole...Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.展开更多
Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or l...Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.展开更多
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 ×...We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.展开更多
A cold atom source is important for quantum metrology and precision measurement.To reduce the quantum projection noise limit in optical lattice clock,one can increase the number of cold atoms and reduce the dead time ...A cold atom source is important for quantum metrology and precision measurement.To reduce the quantum projection noise limit in optical lattice clock,one can increase the number of cold atoms and reduce the dead time by enhancing the loading rate.In this work,we realize an enhanced cold mercury atom source based on a two-dimensional(2D)magnetooptical trap(MOT).The vacuum system is composed of two titanium chambers connected with a differential pumping tube.Two stable cooling laser systems are adopted for the 2D-MOT and the three-dimensional(3D)-MOT,respectively.Using an optimized 2D-MOT and push beam,about 1.3×10^(6)atoms,which are almost an order of magnitude higher than using a pure 3D-MOT,are loaded into the 3D-MOT for202Hg atoms.This enhanced cold mercury atom source is helpful in increasing the frequency stability of a neutral mercury lattice clock.展开更多
The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare ...The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be.展开更多
The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were inv...The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were investigated. The in-plane uniaxial magnetic anisotropy was probed by the magneto-optical Kerr effect (MOKE). The value of UMA, Ku = 2.5 x 103 J/m3, was simulated from the field dependence of ac susceptibility along the hard axis according to the Stoner-Wohlfarth (S-W) model, which is consistent with Ku = 2.7~ 103 J/m3 calculated from the magnetic hysteresis loops. Our results show that the magneto-optical Kerr effect susceptometry can be employed to determine the magnetic anisotropy constant owing to its high sensitivity.展开更多
Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock...Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock, with a 253. 7nm frequency quadrupled laser. Up to 1.7 × 10^6 (202Hg) or 1.5 × 10^6 (199Hg) atoms can be captured, and the atom temperature is lowered to 170μK (202Hg) or 50μK (199Hg). The cold atom signals of all six rich abundant isotopes are observed in this system.展开更多
The magnetic and magneto-optical properties of heavily doped Bi∶YIG film were studied. The film was deposited by radio frequency magnetron sputtering method and crystallized by rapid recurrent thermal annealing (RRTA...The magnetic and magneto-optical properties of heavily doped Bi∶YIG film were studied. The film was deposited by radio frequency magnetron sputtering method and crystallized by rapid recurrent thermal annealing (RRTA). The results show that the RRTA treated film has good properties both in microwave and optical wave band. The saturation magnetization of the film on different substrates varies from 135.7 to 138.6 kA·m-1. The coercive field of the film on GGG substrate is about 0.32 kA·m-1, while about 0.8-1.43 kA·m-1 on YAG substrate and 1.75 kA·m-1 on Al2O3 substrate. The Faraday angle is about 3-5 (°)·μm-1 when optical wavelength ranges at 450-600 nm. The transmission spectra of the Bi∶YIG films on three substrates has similar change as annealing temperature below 800 ℃. Specially, when annealing temperature is above 800 ℃ a step is observed between 550 and 650 nm wavelength for the film deposited on Al2O3 substrate.Three results are very useful in magneto-optical recording application and integrated microwave devices.展开更多
The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected t...The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected to Faraday rotation are used as a replacement for electromagnetic transducers due to their immunity to electromagnetic interference. However, the principal parameter in this system, the sensitivity to magnetic fields or current, depends on the Verdet constant, which is low in the case of optical fibers. However, the optical path length can be increased to compensate for it by winding the fiber around a current carrying element a large number of turns. In this work, we study a current sensor, which is made up of a conductor coil with a fiber inside, thus increasing sensitivity. We study the effect of the inhomogeneity of the magnetic field induced by the current on the sensitivity of the optical fiber sensor.展开更多
With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickn...With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickness of Co films and the lattice of voids, different optical modes were introduced. For a very shallow array of voids, the resonant MOKE was induced by Ag plasma edge resonance, for deeper ones, hybrid plasma modes, such as void plasmons in the voids, surface lattice plasmons between the voids, and the co-action of them, etc. resulted in resonant MOKE. We found that resonant MOKE resulted from the void plasmons resonance which possesses the narrowest bandwidth for the lowest absorption of voids. The simulated electromagnetic field(EF) distribution consolidated different effects of these three optical modes on resonant MOKE modulation. Such resonant polar MOKE possesses high sensitivity, which might pave the way to on-chip MO devices.展开更多
The magneto-optical Kerr effect of the HfO2/Co/HfO2/A1 multilayer structure is investigated in this work, and an ob- vious cavity enhancement of the Kerr response for the HfO2 semiconductor is found both theoretically...The magneto-optical Kerr effect of the HfO2/Co/HfO2/A1 multilayer structure is investigated in this work, and an ob- vious cavity enhancement of the Kerr response for the HfO2 semiconductor is found both theoretically and experimentally. Surprisingly, a maximum value of about -3 of the polar Kerr rotation for s-polarized incident light is observed in our experiment. We propose that this improvement on the Kerr effect can be attributed to the multiple reflection and optical interference in the cavity, which can also be proved by simulation using the finite element method.展开更多
The longitudinal generalized magneto-optical ellipsometry (GME) method is extended to the measurement of three- layer ultrathin magnetic films. In this work, the theory of the reflection matrix is introduced into th...The longitudinal generalized magneto-optical ellipsometry (GME) method is extended to the measurement of three- layer ultrathin magnetic films. In this work, the theory of the reflection matrix is introduced into the GME measurement to obtain the reflective matrix parameters of ultrathin multilayer magnetic films with different thicknesses. After that, a spectroscopic ellipsometry is used to determine the optical parameter and the thickness of every layer of these samples, then the magneto-optical coupling constant of the multilayer magnetic ultrathin film can be obtained. After measurements of a series of ultrathin Fe films, the results show that the magneto-optical coupling constant Q is independent of the thickness of the magnetic film. The magneto-optical Kerr rotations and ellipticity are measured to confirm the validity of this experiment. Combined with the optical constants and the Q constant, the Kerr rotations and ellipticity are calculated in theory. The results show that the theoretical curve fits very well with the experimental data.展开更多
In this paper, we first theoretically report the magnetic and magneto-opticalproperties in paramagnetic media under high external magnetic field. Considering the action of theexternal magnetic Geld H_e and indirect ex...In this paper, we first theoretically report the magnetic and magneto-opticalproperties in paramagnetic media under high external magnetic field. Considering the action of theexternal magnetic Geld H_e and indirect exchange interaction H_v, the characteristic of the magneticsaturation and the property of the Faraday rotation to be nonlinear with external magnetic Geld arepresented in paramagnetic NdF_3. In terms of our theory, the indirect exchange interaction plays auimportant role in the magnetization M and the Faraday rotation θ in NdF_3 under high externalmagnetic Geld. The theory is in good agreement with experimental results. On the other hand, areasonable explanation for the temperature dependence of the ratio of the Verdet constant to themagnetic susceptibility V/x is obtained.展开更多
Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control para...Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.展开更多
Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and ex...Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.展开更多
In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetr...In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetration or unacceptable welds.Recognition of joint position offset, which describes the deviation between the laser beam focus and the weld joint, is important for adjusting the laser beam focus and obtaining high quality welds. A new method based on the magneto-optical(MO) imaging is applied to measure the micro weld joint whose gap is less than 0.2 mm. The weldments are excited by an external magnetic field, and an MO sensor based on principle of Faraday magneto effect is used to capture the weld joint images. A sequence of MO images which are tested under different magnetic field intensities and different weld joint widths are acquired. By analyzing the MO image characteristics and extracting the weld joint features, the influence of magnetic field intensity and weld joint width on the MO images and detection of weld joint position is observed and summarized.展开更多
文摘We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators.
基金the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.12025509 and 12104521)Fundamental Research Project of Shenzhen(Grant No.JCYJ20230808105009018).
文摘Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.
文摘The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金supported by the National Natural Science Foundation of China (Grant Nos 60578018 and 10434080)the project for excellent research team from the National Natural Science Foundation of China (Grant No 60821004)+4 种基金the Program for New Century Excellent Talents of the Education Ministry of China (Grant No NCET-07-0524)the State Basic Key Research Program of China (Grant No 2006CB921102)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No 20070108003)the Natural Science Foundation of Shanxi Province,China (Grant No 2007011003)the Scientific Research Funds for Returned Scholars Abroad of Shanxi Province,China
文摘Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60578018 and 10434080)the State Key Research Program of China (Grant No 2006CB921102)+2 种基金the Program for New Century Excellent Talents of the Education Ministry, China (Grant No NCET-07-0524)the Specialized Research Fund for the Doctoral Program of China (Grant No 20070108003)the Natural Science Foundation of Shanxi Province, China (Grant No 2007011003)
文摘Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60578018 10434080, and 10374062), the Sino-Russia Joint Project (NSFC-RFBR), by the Key Scientific Project of the Education Ministry of China (Grant No 204019), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No 705010) and the Program for Innovative Research Team in University (IRT0516) from the Education Ministry of China, and also by the Research Funds for Youth Academic Leaders of Shanxi Province.
文摘We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.
文摘A cold atom source is important for quantum metrology and precision measurement.To reduce the quantum projection noise limit in optical lattice clock,one can increase the number of cold atoms and reduce the dead time by enhancing the loading rate.In this work,we realize an enhanced cold mercury atom source based on a two-dimensional(2D)magnetooptical trap(MOT).The vacuum system is composed of two titanium chambers connected with a differential pumping tube.Two stable cooling laser systems are adopted for the 2D-MOT and the three-dimensional(3D)-MOT,respectively.Using an optimized 2D-MOT and push beam,about 1.3×10^(6)atoms,which are almost an order of magnitude higher than using a pure 3D-MOT,are loaded into the 3D-MOT for202Hg atoms.This enhanced cold mercury atom source is helpful in increasing the frequency stability of a neutral mercury lattice clock.
文摘The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be.
基金Project supported by the National Basic Research Program of China(Grant Nos.2009CB929201,2011CB921801,and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.50931006,11034004,51021061,and 11274033)
文摘The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were investigated. The in-plane uniaxial magnetic anisotropy was probed by the magneto-optical Kerr effect (MOKE). The value of UMA, Ku = 2.5 x 103 J/m3, was simulated from the field dependence of ac susceptibility along the hard axis according to the Stoner-Wohlfarth (S-W) model, which is consistent with Ku = 2.7~ 103 J/m3 calculated from the magnetic hysteresis loops. Our results show that the magneto-optical Kerr effect susceptometry can be employed to determine the magnetic anisotropy constant owing to its high sensitivity.
基金Supported by the National Natural Science Foundation of China under Grant No 91436105the National Basic Research Program of China under Grant No 2011CB921504the Research Project of Shanghai Science and Technology Commission under Grant No 09DJ1400700
文摘Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock, with a 253. 7nm frequency quadrupled laser. Up to 1.7 × 10^6 (202Hg) or 1.5 × 10^6 (199Hg) atoms can be captured, and the atom temperature is lowered to 170μK (202Hg) or 50μK (199Hg). The cold atom signals of all six rich abundant isotopes are observed in this system.
基金This work was supported by the National Natural Science Foundation of China (No.60425102)
文摘The magnetic and magneto-optical properties of heavily doped Bi∶YIG film were studied. The film was deposited by radio frequency magnetron sputtering method and crystallized by rapid recurrent thermal annealing (RRTA). The results show that the RRTA treated film has good properties both in microwave and optical wave band. The saturation magnetization of the film on different substrates varies from 135.7 to 138.6 kA·m-1. The coercive field of the film on GGG substrate is about 0.32 kA·m-1, while about 0.8-1.43 kA·m-1 on YAG substrate and 1.75 kA·m-1 on Al2O3 substrate. The Faraday angle is about 3-5 (°)·μm-1 when optical wavelength ranges at 450-600 nm. The transmission spectra of the Bi∶YIG films on three substrates has similar change as annealing temperature below 800 ℃. Specially, when annealing temperature is above 800 ℃ a step is observed between 550 and 650 nm wavelength for the film deposited on Al2O3 substrate.Three results are very useful in magneto-optical recording application and integrated microwave devices.
文摘The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected to Faraday rotation are used as a replacement for electromagnetic transducers due to their immunity to electromagnetic interference. However, the principal parameter in this system, the sensitivity to magnetic fields or current, depends on the Verdet constant, which is low in the case of optical fibers. However, the optical path length can be increased to compensate for it by winding the fiber around a current carrying element a large number of turns. In this work, we study a current sensor, which is made up of a conductor coil with a fiber inside, thus increasing sensitivity. We study the effect of the inhomogeneity of the magnetic field induced by the current on the sensitivity of the optical fiber sensor.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2015AM024)the Doctoral Research Started Funding of Qufu Normal University,China(Grant No.BSQD20130152)
文摘With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickness of Co films and the lattice of voids, different optical modes were introduced. For a very shallow array of voids, the resonant MOKE was induced by Ag plasma edge resonance, for deeper ones, hybrid plasma modes, such as void plasmons in the voids, surface lattice plasmons between the voids, and the co-action of them, etc. resulted in resonant MOKE. We found that resonant MOKE resulted from the void plasmons resonance which possesses the narrowest bandwidth for the lowest absorption of voids. The simulated electromagnetic field(EF) distribution consolidated different effects of these three optical modes on resonant MOKE modulation. Such resonant polar MOKE possesses high sensitivity, which might pave the way to on-chip MO devices.
基金supported by the National Key Project of Fundamental Research of China(Grant Nos.2012CB932304 and 2010CB923404)the National Natural Science Foundation of China(Grant Nos.50971070 and U1232210)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The magneto-optical Kerr effect of the HfO2/Co/HfO2/A1 multilayer structure is investigated in this work, and an ob- vious cavity enhancement of the Kerr response for the HfO2 semiconductor is found both theoretically and experimentally. Surprisingly, a maximum value of about -3 of the polar Kerr rotation for s-polarized incident light is observed in our experiment. We propose that this improvement on the Kerr effect can be attributed to the multiple reflection and optical interference in the cavity, which can also be proved by simulation using the finite element method.
基金Project supported by the National Basic Research Program of China(Grant No.2009CB929400)the Independent Innovation Foundation of Shandong University,China(Grant No.2012ZB040)
文摘The longitudinal generalized magneto-optical ellipsometry (GME) method is extended to the measurement of three- layer ultrathin magnetic films. In this work, the theory of the reflection matrix is introduced into the GME measurement to obtain the reflective matrix parameters of ultrathin multilayer magnetic films with different thicknesses. After that, a spectroscopic ellipsometry is used to determine the optical parameter and the thickness of every layer of these samples, then the magneto-optical coupling constant of the multilayer magnetic ultrathin film can be obtained. After measurements of a series of ultrathin Fe films, the results show that the magneto-optical coupling constant Q is independent of the thickness of the magnetic film. The magneto-optical Kerr rotations and ellipticity are measured to confirm the validity of this experiment. Combined with the optical constants and the Q constant, the Kerr rotations and ellipticity are calculated in theory. The results show that the theoretical curve fits very well with the experimental data.
文摘In this paper, we first theoretically report the magnetic and magneto-opticalproperties in paramagnetic media under high external magnetic field. Considering the action of theexternal magnetic Geld H_e and indirect exchange interaction H_v, the characteristic of the magneticsaturation and the property of the Faraday rotation to be nonlinear with external magnetic Geld arepresented in paramagnetic NdF_3. In terms of our theory, the indirect exchange interaction plays auimportant role in the magnetization M and the Faraday rotation θ in NdF_3 under high externalmagnetic Geld. The theory is in good agreement with experimental results. On the other hand, areasonable explanation for the temperature dependence of the ratio of the Verdet constant to themagnetic susceptibility V/x is obtained.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z319)the National Basic Research Program of China (Grant No. 2006CB921603)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61008012,11074154,10934004,60978018,60978001,and 60808009)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)the National Natural Science Foundation for Excellent Research Team (Grant No. 60821004)the New Teacher Foundation of the Ministry of Education of China (Grant No. 20101401120004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536218,11374100,10904037,10974055,11034002,and 11274114)the National Key Basic Research and Development Program of China(Grant No.2011CB921602)the Natural Science Foundation of Shanghai Municipality,China(Grant No.13ZR1412800)
文摘Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.
基金Project supported by the National Natural Science Foundation of China(Grant No.51175095)the Natural Science Foundation of Guangdong Province,China(Grant No.10251009001000001)+1 种基金the Guangdong Provincial Project of Science and Technology Innovation of Discipline Construction,China(Grant No.2013KJCX0063)the Science and Technology Plan Project of Guangzhou City,China(Grant No.1563000554)
文摘In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetration or unacceptable welds.Recognition of joint position offset, which describes the deviation between the laser beam focus and the weld joint, is important for adjusting the laser beam focus and obtaining high quality welds. A new method based on the magneto-optical(MO) imaging is applied to measure the micro weld joint whose gap is less than 0.2 mm. The weldments are excited by an external magnetic field, and an MO sensor based on principle of Faraday magneto effect is used to capture the weld joint images. A sequence of MO images which are tested under different magnetic field intensities and different weld joint widths are acquired. By analyzing the MO image characteristics and extracting the weld joint features, the influence of magnetic field intensity and weld joint width on the MO images and detection of weld joint position is observed and summarized.