期刊文献+
共找到18,239篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal fatigue and wear of compacted graphite iron brake discs with various thermomechanical properties
1
作者 Gui-quan Wang Zhuo Xu +2 位作者 Zhong-li Liu Xiang Chen Yan-xiang Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期248-256,共9页
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat... The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear. 展开更多
关键词 compacted graphite iron brake disc thermomechanical properties thermal fatigue WEAR
下载PDF
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview
2
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad BIOCOMPOSITES green composite mechanical properties natural reinforcement WASTE
下载PDF
Skyhook-based Semi-active Control of Full-vehicle Suspension with Magneto-rheological Dampers 被引量:11
3
作者 ZHANG Hailong WANG Enrong +2 位作者 MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期498-505,共8页
The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller ha... The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) fullvehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Boucwen hysteretic force-velocity (F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and handling safety of the proposed MR full-vehicle suspension are thus thoroughly evaluated by comparing with those of the passive full-vehicle suspension. The results show that the proposed controller can ideally improve multiobjective suspension performances of the ride comfort and handling safety. The proposed harmonic, rounded pulse and real road measured random signals with delay time and asymmetric amplitudes are suitable for accurately analyzing the vertical, pitch and roll motion properties of MR full-vehicle suspension system in a more realistic road excitation manner. This research has important theoretical significance for improving application study on the intelligent MR semi-active suspension. 展开更多
关键词 magneto-rheological damper skyhook policy semi-active control multi-objective performances full-vehicle suspension
下载PDF
Semi-active Sliding Mode Control of Vehicle Suspension with Magneto-rheological Damper 被引量:12
4
作者 ZHANG Hailong WANG Enrong +3 位作者 ZHANG Ning MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期63-75,共13页
The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, ... The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity (F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems. 展开更多
关键词 magneto-rheological damper vehicle suspension multi-objective performance semi-active sliding mode control FILTERING
下载PDF
Fuzzy Hybrid Control of Vibration Attitude of Full Car via Magneto-rheological Suspensions 被引量:12
5
作者 LI Rui CHEN Weimin +1 位作者 LIAO Changrong DONG Xiaomin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期72-79,共8页
A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or... A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC. 展开更多
关键词 CAR magneto-rheological suspension vibration attitude fuzzy control hybrid damping control road test
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS PARTⅡ——EVALUATION OF SUSPENSION PERFORMANCE 被引量:5
6
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期45-52,共8页
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric d... The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness. 展开更多
关键词 magneto-rheological damper Asymmetric damping Semi-active control Vehicle suspension Multi-objective performance
下载PDF
The Knee Joint Design and Control of Above-knee Intelligent Bionic Leg Based on Magneto-rheological Damper 被引量:7
7
作者 Hua-Long Xie Ze-Zhong Liang +1 位作者 Fei Li Li-Xin Guo 《International Journal of Automation and computing》 EI 2010年第3期277-282,共6页
The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of ... The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of the four-bar link mechanism and the magneto-rheological (MR) damper are analyzed in detail. The fixed position of the MR damper is optimized and a virtual prototype of knee joint is given. In the end, the system model of kinematics, dynamics, and controller are given and a control experiment is performed. The control experiment indicates that the intelligent bionic leg with multi-axis knee is able to realize gait tracking of the amputee's healthy leg based on semi-active control of the MR damper. 展开更多
关键词 Knee joint above-knee intelligent bionic leg magneto-rheological damper.
下载PDF
A new variable stiffness absorber based on magneto-rheological elastomer 被引量:3
8
作者 董小闵 余淼 +1 位作者 廖昌荣 陈伟民 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期611-615,共5页
A new adaptive variable stiffness absorber was proposed based on a smart material, magnetorheological elastomer (MRE), and its vibration control performance was investigated. Before developing the proposed absorber, t... A new adaptive variable stiffness absorber was proposed based on a smart material, magnetorheological elastomer (MRE), and its vibration control performance was investigated. Before developing the proposed absorber, the MREs were firstly fabricated by curing a mixture of 704 silicon rubber, carbonyl iron particles and a small amount of silicone oil under an external magnetic field. Then the mechanical properties of the fabricated MREs were measured. On the basis of the measured mechanical characteristics, the MRE absorber was developed and its working characteristics were also tested under various input currents and excited frequencies. Finally, the control responses of a two-degree-of-freedom dynamic system with a MRE absorber were presented under a chirp input and used to evaluate the effectiveness of the MRE absorber. 展开更多
关键词 magneto-rheological ELASTOMER VARIABLE STIFFNESS ABSORBER
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART Ⅰ——CONTROLLER SYNTHESIS AND EVALUATION 被引量:8
9
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJASubhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期13-19,共7页
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi... A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance. 展开更多
关键词 magneto-rheological damper Skyhook damping Semi-active control Vehicle suspension
下载PDF
Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control 被引量:2
10
作者 YQ Ni ZG Ying ZH Chen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期345-356,共12页
Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoel... Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range. 展开更多
关键词 magneto-rheological elastomer (MRE) micro-vibration control EQUIPMENT composite structure sandwich beam stochastic excitation
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART III—EXPERIMENTAL VALIDATION 被引量:2
11
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期56-63,共8页
A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, ... A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, and examine the validity of the proposed MR-damper model in a system surrounding. A real-time monitor is designed to assess and monitor the responses of the quarter-vehicle model in the HIL platform, and to select the excitation, controller synthesis, and the output displays. A drive current circuit hardware employing PID feedback technique is developed to compensate for the time delays from the servo-controller and drive current circuit, in which a small resistance is integrated in the current amplifier circuit to provide the feedback signal. The experiments were performed to measure the responses of the quarter-vehicle MR-suspension models with fixed current and the proposed semi-active MR-damping variations, under harmonic, rounded pulse and random road excitations. The measured data were compared with the corresponding model results to examine the model and controller validity, and revealed generally good agreements in the model and tested results and very little sensitivity of the tested responses to variations in the sprung mass. The HIL test results validate the effectiveness of the proposed skyhook-based semi-active asymmetric controller and its high robustness against the vehicle load variations in view of the intelligent vehicle suspension design. 展开更多
关键词 magneto-rheological damper Vehicle suspension Hardware-in-the-loop simulation
下载PDF
Delay-dependent H_(2)/H_(∞) Control for Vehicle Magneto-rheological Semi-active Suspension 被引量:1
12
作者 CHEN Wuwei ZHU Maofei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1028-1034,共7页
The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handli... The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems. 展开更多
关键词 magneto-rheological semi-active suspension(MSAS) time-delay delay-dependent H2/H∞ state feedback control linear matrix inequality(LMI)
下载PDF
Dynamic mechanical characteristics of NdFeB in electromagnetic brake 被引量:1
13
作者 Lei Li Guo-lai Yang Li-qun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期111-125,共15页
With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electr... With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring. 展开更多
关键词 Electromagnetic brake Sintered NdFeB Damage constitutive Dynamic mechanical characteristics
下载PDF
Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation
14
作者 张海龙 王恩荣 +1 位作者 闵富红 张宁 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期100-110,共11页
The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD... The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. 展开更多
关键词 magneto-rheological damper HYSTERESIS Bouc-Wen model chaotic motions
下载PDF
An approach for simulating the air brake system of long freight trains based on fluid dynamics 被引量:1
15
作者 Xin Ge Qinghua Chen +2 位作者 Liang Ling Wanming Zhai Kaiyun Wang 《Railway Engineering Science》 2023年第2期122-134,共13页
Air brake systems are critical equipment for railway trains, which affects the running safety of the trains significantly. To study air braking characteristics of long freight trains, an approach for simulating air br... Air brake systems are critical equipment for railway trains, which affects the running safety of the trains significantly. To study air braking characteristics of long freight trains, an approach for simulating air brake systems based on fuid dynamics theory was proposed. The structures and working mechanisms of locomotive and wagon air brakes are introduced, and mathematical models of the pipes, brake valves, reservoirs or chambers, cylinders, etc., are presented.Besides, the dynamic motions of parts in the main valve are considered. The simulation model of the whole air brake system is then formulated, and the solving method based on the finite-difference method is used. New efficient pipe boundary conditions without iterations are developed for brake pipes and branch pipes, which can achieve higher computational efficiency. The proposed approach for simulating the air brake system is validated by comparing with published measured data. Simulation results of different train formations indicate that models that consider the dynamic behavior of brake pipes are recommended for predicting the characteristics of long trains under service braking conditions. 展开更多
关键词 Air brake system Fluid dynamics Railway train Boundary condition SIMULATION
下载PDF
A numerical method for the simulation of freight train emergency braking operations based on the UIC braked weight percentage
16
作者 N.Bosso Matteo Magelli N.Zampieri 《Railway Engineering Science》 2023年第2期162-171,共10页
The present paper shows the development of a strategy for the calculation of the air brake forces of European freight trains. The model is built to upgrade the existing Politecnico di Torino longitudinal train dynamic... The present paper shows the development of a strategy for the calculation of the air brake forces of European freight trains. The model is built to upgrade the existing Politecnico di Torino longitudinal train dynamics(LTD) code LTDPoliTo, which was originally unable to account for air brake forces. The proposed model uses an empirical exponential function to calculate the air brake forces during the simulation, while the maximum normal force on the brake friction elements is calculated according to the indication of the vehicle braked weight percentage.Hence, the model does not require to simulate in detail the fluid dynamics in the brake pipe nor to precisely know the main parameters of the braking system mounted on each vehicle. The model parameters are tuned to minimize the difference between the braking distance computed by the LTDPoliTo code and the value prescribed by the UIC544-1 leaflet in emergency braking operations. Simulations are run for different configurations of freight train compositions including a variable number of Shimmns wagons trailed by an E402B locomotive at the head of the train, as suggested in a reference literature paper. The results of the proposed method are in good agreement with the target braking distances calculated according to the international rules. 展开更多
关键词 Railway brake modelling Emergency braking UIC braking system braked weight Longitudinal train dynamics
下载PDF
A simplified pneumatic model for air brake of passenger trains
17
作者 Luciano Cantone Andrea Ottati 《Railway Engineering Science》 2023年第2期145-152,共8页
Braking system performance is relevant for both railway safety and network optimization. Most trains employ air brake systems;air brake systems of freight trains mostly cannot achieve a synchronous application of brak... Braking system performance is relevant for both railway safety and network optimization. Most trains employ air brake systems;air brake systems of freight trains mostly cannot achieve a synchronous application of brake forces, which is usually customary for passenger trains. The paper generalizes a previous air brake pneumatic model to passenger trains and describes the needed modifications. Among them, the way the pressure reduces in the brake pipe is generalized. Moreover, this paper reports an analytical bi-dimensional function for calculating the nozzle diameter equivalent to the electro-pneumatic(EP) or the electronically controlled pneumatic(ECP)brake valve as a function of the wagon length and the time to vent the brake pipe locally. The numerical results of the new model are compared against several experimental tests of high-speed passenger trains of Trenitalia, namely ETR500 and ETR1000. The model is suitable to be integrated into the UIC software TrainDy, aiming to extend its computational field to passenger trains and to simulate the safety of trains during a recovery. 展开更多
关键词 EP or ECP modeling Model validation TrainDy Train brake Air brake
下载PDF
Assessment of Asbestos Exposure Associated with a Brake Grinder
18
作者 Charles L. Blake Kevin M. Guth Raymond D. Harbison 《Occupational Diseases and Environmental Medicine》 2023年第3期137-142,共6页
The wear patterns for drum-style automotive brakes tend to enlarge internal drum diameters. Such enlargement is most profound when used brake drums are machined to restore the metal friction surfaces. Specialized arc ... The wear patterns for drum-style automotive brakes tend to enlarge internal drum diameters. Such enlargement is most profound when used brake drums are machined to restore the metal friction surfaces. Specialized arc grinding machinery has been used to match replacement shoe-style brake friction materials to enlarged drums. The process of arc grinding removes friction material, thereby producing dust. When organic-style friction materials contained asbestos, use of arc grinding machinery posed an asbestos fiber exposure risk to operators and proximate personnel. The manufacturers of arc grinding machinery have incorporated local exhaust ventilation systems designed to capture and remove this dust at the point of grinding contact and propel this dust into collection bags or other systems. This research was designed to evaluate the dust capture and retention characteristics of a specific arc grinder product, when used to custom grind asbestos-containing brake friction materials. A Bear Model 1420 automotive brake shoe arc grinder was the subject of this study. During two separate but consecutive test sessions, newly relined sets of shoe-style automobile brake friction materials were precision ground. Both area and personal air samples were collected throughout each testing session. This work took place within a closed and unventilated metal building, with total interior volume of 2500 m<sup>3</sup>. Collected air samples were analyzed using phase contrast microscopy (PCM) and transmission electron microscopy (TEM). The results of analysis using PCM for personal samples (n = 6) ranged from <0.044 to 0.055 fibers per cc (f/cc) (mean 0.05). Follow-up analysis of these personal samples using TEM indicated asbestos-adjusted PCM exposures ranging from <0.0074 to 0.055 f/cc (mean ≤ 0.041). Area air samples, taken at distances ranging from 1.5 to 9 meters from the arc grinder (n = 12), showed asbestos-adjusted PCM concentrations ranging from <0.0075 to 0.041 f/cc (mean ≤ 0.017). The process of custom arc grinding shoe-style, asbestos-containing brake friction materials can cause exposure to airborne asbestos fibers. However, when done using properly equipped arc grinding machines, such exposures are not expected to exceed the current occupational exposure limits for asbestos of 0.1 f/cc 8-hour time-weighted average (TWA) or 1.0 f/cc 30-minute average. 展开更多
关键词 Asbestos Exposure brakes Arc Grinder Friction Materials
下载PDF
Analysis of a Cashew Shell and Fly Ash Rich Brake Liner Composite Material
19
作者 R.Selvam L.Ganesh Babu +3 位作者 Joji Thomas R.Prakash T.Karthikeyan T.Maridurai 《Fluid Dynamics & Materials Processing》 EI 2023年第3期569-577,共9页
Hybrid materials collected from organic and inorganic sources,which are traditionally used as brake lining materials,generally include fly ash,cashew shell powder,phenolic resins,aluminium wool,barites,lime powder,car... Hybrid materials collected from organic and inorganic sources,which are traditionally used as brake lining materials,generally include fly ash,cashew shell powder,phenolic resins,aluminium wool,barites,lime powder,carbon powder and copper powder.The present research focuses on the specific effects produced by fly ash and aims to provide useful indications for the replacement of asbestos due to the health hazards caused by the related fibers.Furthermore,the financial implications related to the use of large-volume use of fly ash,lime stone and cashew shell powder,readily available in most countries in the world,are also discussed.It is shown that many manufacturing and automotive industries,which are currently experiencing difficulties in meeting the increasing demand for brake lining material,may take advantage from the proposed solution. 展开更多
关键词 Friction coefficient WEAR composite brake lining binders
下载PDF
A trailer car dynamics model considering brake rigging of a high-speed train and its application
20
作者 Zhiwei Wang Linchuan Yang +2 位作者 Jiliang Mo Song Zhu Wenwei Jin 《Railway Engineering Science》 2023年第3期269-280,共12页
Brake systems are essential for the speed regulation or braking of a high-speed train.The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety.To revea... Brake systems are essential for the speed regulation or braking of a high-speed train.The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety.To reveal the vehicle dynamic behaviour in braking process,a comprehensive trailer car dynamics model(TCDM)considering brake systems is established in this paper.The dynamic interactions between the brake system and the other connected components are achieved using the brake disc-pad frictions,brake suspension systems,and wheel-rail interactions.The force and motion transmission from the brake system to the wheel-rail interface is performed by the proposed TCDM excited by track irregularity.In addition,the validity of TCDM is verified by experimental test results.On this basis,the dynamic behaviour of the coupled system is simulated and discussed.The findings indicate that the braking force significantly affects vehicle dynamic behaviour including the wheel-rail forces,suspension forces,wheelset torsional vibration,etc.The dynamic interactions within the brake system are also significantly affected by the vehicle vibration due to track irregularity.Besides,the developed TCDM can be further employed to the dynamic assessment of such a coupled mechanical system under different braking conditions. 展开更多
关键词 brake system Disc-pad frictions Wheel-rail interactions Track irregularity High-speed train
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部