With the addition of Gd, the Ni56Mn18.8Ga24.5 Gd0.7 alloy exhibits non-modulated martensite phase at room temperature. From the illustration of Gd microstructure, it can be found that Gd exists along the subgrain boun...With the addition of Gd, the Ni56Mn18.8Ga24.5 Gd0.7 alloy exhibits non-modulated martensite phase at room temperature. From the illustration of Gd microstructure, it can be found that Gd exists along the subgrain boundaries. Hence, the crystalline size decreases and the mechanical properties improve. At-susceptibility results show that Ni56Mn18.8Ga24.5 Gd0.7 alloy still undergoes simultaneous structural and magnetic transitions and transforms from ferromagnetic martensitic phase to paramagnetic austenitic phase with increasing temperature. The maximum magnetic entropy change is 13.4 J· (kg·K) ^-1 under 1.9 T field at 338 K. The giant magnetocaloric effect found in Ni56Mn18.8Ga24.5 Gd0.7 alloy is attributed to the concurrently occurring first-order structural- and magnetic-phase transitions.展开更多
Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural an...Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating.展开更多
The lattice parameters, magnetic phase transition, Curie temperature and magnetocaloric properties for (Gd1-xTbx)5Si1.72- Ge2.28 alloys with x = 0, 0.15, 0.20 and 0.25 were investigated by X-ray powder diffractometry ...The lattice parameters, magnetic phase transition, Curie temperature and magnetocaloric properties for (Gd1-xTbx)5Si1.72- Ge2.28 alloys with x = 0, 0.15, 0.20 and 0.25 were investigated by X-ray powder diffractometry and magnetization measurements. The results show that suitable partial substitution of Tb in Gd5Si1.72Ge2.28 compound remains the first-order magnetic-crystallographic transition and enhances the magnetic entropy change, although Tb substitution decreases the Curie temperature (TC) of the compounds. The magnetic entropy change of (Gd1-xTbx)5Si1.72Ge2.28 alloys retains a large value in the low magnetic field of 1.0 T. The maximum magnetic entropy change for (Gd0.80Tb0.20)5Si1.72Ge2.28 alloy in the magnetic field from 0 to 1.0 T reaches 8.7 J/(kg·K), which is nearly 4 times as large as that of (Gd0.3Dy0.7)5Si4 compound (|-Smax| = 2.24 J/(kg·K), T_C = 198 K).展开更多
The magnetic cooling utilizing magneto-caloric effect is recognized as promising energy efficiency and environmentally friendly technology.Here we report a systematical study on the microstructures,magnetic properties...The magnetic cooling utilizing magneto-caloric effect is recognized as promising energy efficiency and environmentally friendly technology.Here we report a systematical study on the microstructures,magnetic properties and cryogenic magneto-caloric performances of the Gd_(20)Ho_(20)Tm_(20)Cu_(20)Ni_(20) amorphous ribbons.It is found that the ribbons reveal a second-order phase transition and are accompanied by a table-shaped magneto-caloric effect.The calculated magneticentropy-change maximum |ΔSM|,temperature averaged entropy change(i.e.,TEC(10)),and refrigerant capacity reach 13.9 J/kg·K,13.84 J/kg-K and 740 J/kg with magnetic field change of 0-7 T,respectively,indicating that the present Gd_(20)Ho_(20)Tm_(20)Cu_(20)Ni_(20) amorphous ribbons are good candidates for magnetic cooling.展开更多
Magnetic properties and magnetic entropy changes of La(Fe_(1-x)Mn_x)_(11.5)Si_(1.5)H_y compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe an...Magnetic properties and magnetic entropy changes of La(Fe_(1-x)Mn_x)_(11.5)Si_(1.5)H_y compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe and hydrogen absorption in 1-atm(1 atm = 1.01325×10~5Pa) hydrogen gas. Under a field change from 0 T to 2 T, the maximum magnetic entropy change for La(Fe_(0.99)Mn_(0.01))_(11.5)Si_(1.5)H_(1.61)is-11.5 J/kg. The suitable Curie temperature and large value of ?S_m make it an attractive potential candidate for the room temperature magnetic refrigeration application.展开更多
The microstructure, magnetic entropy changes, hysteresis and magnetic properties of La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.5–x)Si_x(x=0.4, 0.5, 0.6, 0.7) compounds were studied by X-ray diffraction(XRD) and a sup...The microstructure, magnetic entropy changes, hysteresis and magnetic properties of La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.5–x)Si_x(x=0.4, 0.5, 0.6, 0.7) compounds were studied by X-ray diffraction(XRD) and a superconducting quantum interference device magnetometer(SQUID). The results showed that all the compounds presented cubic Na Zn13-type structure. Their Curie temperatures changed complicatedly with decreasing Al content due to changes of antiferromagnetic and ferromagnetic interaction. Under a field change from 0 to 2 T, the maximum magnetic entropy change for La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.1)Si_(0.4), La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.0)Si_(0.5), La_(0.8)Ce_(0.2)Fe_(11.5)Al_(0.9)Si_(0.6) and La_(0.8)Ce_(0.2)Fe_(11.5)Al_(0.8)Si_(0.7) were found to be –9.6, –4.8, –5.8 and –11.7 J/(kg·K), respectively. Moreover, their hysteresis losses were 1.13 J/(kg·K) or less. The large magnetic entropy changed and small hysteresis losses made them potential candidates for practical magnetic refrigeration application.展开更多
The magnetic functional materials play a particularly important role in our modern society and daily life.The magnetocaloric effect(MCE)is at the basis of a solid state magnetic refrigeration(MR)technology which may e...The magnetic functional materials play a particularly important role in our modern society and daily life.The magnetocaloric effect(MCE)is at the basis of a solid state magnetic refrigeration(MR)technology which may enhance the efficiency of cooling systems,both for room temperature and cryogenic appli-cations.Despite numerous experimental and theoretical MCE studies,commercial MR systems are still at developing stage.Designing magnetic solids with outstanding magnetocaloric performances remains therefore a most urgent task.Herein,recent progresses on characterizing the crystal structure,magnetic properties and cryogenic MCE of rare earths(RE)-based RE_(2)TMTM’O_(6)double perovskite(DP)oxides,where TM and TM’are different 3d transition metals,are summarized.Some Gd-based DP oxides are found to exhibit promising cryogenic magnetocaloric performances which make them attractive for active MR ap-plications.展开更多
The magnetic refrigeration(MR)utilizing magnetocaloric effect(MCE)has been recognized as an environmentally friendly and energy efficiency technology.Here we presented the magnetic properties and MCE in Pr-doped La_(1...The magnetic refrigeration(MR)utilizing magnetocaloric effect(MCE)has been recognized as an environmentally friendly and energy efficiency technology.Here we presented the magnetic properties and MCE in Pr-doped La_(1-x)Pr_(x)Fe_(12)B_(6)(x=0.05-0.2)itinerant-electron metamagnetic(IEM)compounds.A small amount of Pr doping La site can greatly improve the peak values in the magnetic entropy change S_(M)(T)curves,especially under relatively low magnetic field changes(ΔH).Additionally,the peak temperature increases gradually and the magnetic hysteresis reduces gradually with increasing x.The observed MCE in present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds is related to its field-induced first-ordered IEM transition.The peak values ofΔS_(M)for La_(1-x)Pr_(x)Fe_(12)B_(6)compounds reach 13.4,15.4,12.5 and 13.0 J/(kg K)at T_(C)~58,68,72and 89 K for x=0.05,0.10,0.15 and 0.2 under H of 0-7 T,respectively.The corresponding relative cooling power values are 462.3,480.7,372.4 and 375.7 J/kg.The present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds could be good candidates for active MR application if the magnetic and thermal hysteresis can be further reduced.The present work indicates that the La Fe_(12)B_(6)-based material system could also exhibit promising magnetocaloric performances.展开更多
基金Project supported bythe National Natural Science Foundation of China (50571008) National Basic Research Programof China(2006CB601101)
文摘With the addition of Gd, the Ni56Mn18.8Ga24.5 Gd0.7 alloy exhibits non-modulated martensite phase at room temperature. From the illustration of Gd microstructure, it can be found that Gd exists along the subgrain boundaries. Hence, the crystalline size decreases and the mechanical properties improve. At-susceptibility results show that Ni56Mn18.8Ga24.5 Gd0.7 alloy still undergoes simultaneous structural and magnetic transitions and transforms from ferromagnetic martensitic phase to paramagnetic austenitic phase with increasing temperature. The maximum magnetic entropy change is 13.4 J· (kg·K) ^-1 under 1.9 T field at 338 K. The giant magnetocaloric effect found in Ni56Mn18.8Ga24.5 Gd0.7 alloy is attributed to the concurrently occurring first-order structural- and magnetic-phase transitions.
基金Project supported by the National Science Foundation of Chinathe National Basic Research Program of China and Institute of Physics,Chinese Academy of Sciences
文摘Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating.
基金Project (50371058) supported by the National Natural Science Foundation of China
文摘The lattice parameters, magnetic phase transition, Curie temperature and magnetocaloric properties for (Gd1-xTbx)5Si1.72- Ge2.28 alloys with x = 0, 0.15, 0.20 and 0.25 were investigated by X-ray powder diffractometry and magnetization measurements. The results show that suitable partial substitution of Tb in Gd5Si1.72Ge2.28 compound remains the first-order magnetic-crystallographic transition and enhances the magnetic entropy change, although Tb substitution decreases the Curie temperature (TC) of the compounds. The magnetic entropy change of (Gd1-xTbx)5Si1.72Ge2.28 alloys retains a large value in the low magnetic field of 1.0 T. The maximum magnetic entropy change for (Gd0.80Tb0.20)5Si1.72Ge2.28 alloy in the magnetic field from 0 to 1.0 T reaches 8.7 J/(kg·K), which is nearly 4 times as large as that of (Gd0.3Dy0.7)5Si4 compound (|-Smax| = 2.24 J/(kg·K), T_C = 198 K).
基金Project supported by the National Natural Science Foundation of China(Grant No.52071197)the Science and Technology Committee of Shanghai(Grant No.19ZR1418300)+2 种基金the Independent Research and Development Project of State Key Laboratory of Advanced Special SteelShanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(Grant No.SKLASS 2019-Z003)the Science and Technology Commission of Shanghai Municipality(Grant No.19DZ2270200)。
文摘The magnetic cooling utilizing magneto-caloric effect is recognized as promising energy efficiency and environmentally friendly technology.Here we report a systematical study on the microstructures,magnetic properties and cryogenic magneto-caloric performances of the Gd_(20)Ho_(20)Tm_(20)Cu_(20)Ni_(20) amorphous ribbons.It is found that the ribbons reveal a second-order phase transition and are accompanied by a table-shaped magneto-caloric effect.The calculated magneticentropy-change maximum |ΔSM|,temperature averaged entropy change(i.e.,TEC(10)),and refrigerant capacity reach 13.9 J/kg·K,13.84 J/kg-K and 740 J/kg with magnetic field change of 0-7 T,respectively,indicating that the present Gd_(20)Ho_(20)Tm_(20)Cu_(20)Ni_(20) amorphous ribbons are good candidates for magnetic cooling.
基金Projct supported by the Science and Technology Development Fund of Higher Education of Tianjin,China(Grant No.20130301)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.14JCQNJC4000)
文摘Magnetic properties and magnetic entropy changes of La(Fe_(1-x)Mn_x)_(11.5)Si_(1.5)H_y compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe and hydrogen absorption in 1-atm(1 atm = 1.01325×10~5Pa) hydrogen gas. Under a field change from 0 T to 2 T, the maximum magnetic entropy change for La(Fe_(0.99)Mn_(0.01))_(11.5)Si_(1.5)H_(1.61)is-11.5 J/kg. The suitable Curie temperature and large value of ?S_m make it an attractive potential candidate for the room temperature magnetic refrigeration application.
基金Project supported by the Science and Technology Development Fund of Higher Education of Tianjin,China(20130301)the Tianjin Research Program of Application Foundation and Advanced Technology,China(14JCQNJC4000)the National Natural Science Foundation of China(11604242)
文摘The microstructure, magnetic entropy changes, hysteresis and magnetic properties of La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.5–x)Si_x(x=0.4, 0.5, 0.6, 0.7) compounds were studied by X-ray diffraction(XRD) and a superconducting quantum interference device magnetometer(SQUID). The results showed that all the compounds presented cubic Na Zn13-type structure. Their Curie temperatures changed complicatedly with decreasing Al content due to changes of antiferromagnetic and ferromagnetic interaction. Under a field change from 0 to 2 T, the maximum magnetic entropy change for La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.1)Si_(0.4), La_(0.8)Ce_(0.2)Fe_(11.5)Al_(1.0)Si_(0.5), La_(0.8)Ce_(0.2)Fe_(11.5)Al_(0.9)Si_(0.6) and La_(0.8)Ce_(0.2)Fe_(11.5)Al_(0.8)Si_(0.7) were found to be –9.6, –4.8, –5.8 and –11.7 J/(kg·K), respectively. Moreover, their hysteresis losses were 1.13 J/(kg·K) or less. The large magnetic entropy changed and small hysteresis losses made them potential candidates for practical magnetic refrigeration application.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52171174 and 91963123)the Ten Thousand Talents Plan of Zhejiang Province(No.2018R52003)the Fundamental Research Funds for the Provincial University of Zhejiang(No.GK199900299012-022).
文摘The magnetic functional materials play a particularly important role in our modern society and daily life.The magnetocaloric effect(MCE)is at the basis of a solid state magnetic refrigeration(MR)technology which may enhance the efficiency of cooling systems,both for room temperature and cryogenic appli-cations.Despite numerous experimental and theoretical MCE studies,commercial MR systems are still at developing stage.Designing magnetic solids with outstanding magnetocaloric performances remains therefore a most urgent task.Herein,recent progresses on characterizing the crystal structure,magnetic properties and cryogenic MCE of rare earths(RE)-based RE_(2)TMTM’O_(6)double perovskite(DP)oxides,where TM and TM’are different 3d transition metals,are summarized.Some Gd-based DP oxides are found to exhibit promising cryogenic magnetocaloric performances which make them attractive for active MR ap-plications.
基金supported by the National Natural Science Foundation of China(No.91963123)the Ten Thousand Talents Plan of Zhejiang Province of China(No.2018R52003)。
文摘The magnetic refrigeration(MR)utilizing magnetocaloric effect(MCE)has been recognized as an environmentally friendly and energy efficiency technology.Here we presented the magnetic properties and MCE in Pr-doped La_(1-x)Pr_(x)Fe_(12)B_(6)(x=0.05-0.2)itinerant-electron metamagnetic(IEM)compounds.A small amount of Pr doping La site can greatly improve the peak values in the magnetic entropy change S_(M)(T)curves,especially under relatively low magnetic field changes(ΔH).Additionally,the peak temperature increases gradually and the magnetic hysteresis reduces gradually with increasing x.The observed MCE in present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds is related to its field-induced first-ordered IEM transition.The peak values ofΔS_(M)for La_(1-x)Pr_(x)Fe_(12)B_(6)compounds reach 13.4,15.4,12.5 and 13.0 J/(kg K)at T_(C)~58,68,72and 89 K for x=0.05,0.10,0.15 and 0.2 under H of 0-7 T,respectively.The corresponding relative cooling power values are 462.3,480.7,372.4 and 375.7 J/kg.The present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds could be good candidates for active MR application if the magnetic and thermal hysteresis can be further reduced.The present work indicates that the La Fe_(12)B_(6)-based material system could also exhibit promising magnetocaloric performances.