Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the c...Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype x environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal, embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore, the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean, The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.展开更多
The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to m...The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to model the water resisting pipe-phalanx within the jacket. The shielding factor for ice force corresponding to different conditions are given in this paper. The research indicates that there are many factors, including the longitudinal and lateral spacing between the front and back pile-row, ice attacking angle and the ratio of pile diameter to ice thickness, that influence the shielding effect on ice force.展开更多
In order to prevent severe pollution by de-icing salt on greenery along urban roads, a half lethal dose (LD_50)for a plant population was confirmed through stress simulation of chloride de-icing salt on Euonymus jap...In order to prevent severe pollution by de-icing salt on greenery along urban roads, a half lethal dose (LD_50)for a plant population was confirmed through stress simulation of chloride de-icing salt on Euonymus japonicus, with an ianalysis of physiological changes, statistics on mortality rate on plant populations and mathematic modeling during a 30- day subacute toxicity test. The results indicate that a significant positive correlation in the early stages and a significant negative correlation in the later stages were observed between the amount of chlorophyll a and b in plants and a cumulative dose of de-icing salt. The amounts of free proline in plants and the dose of de-icing salt were positively correlated Over the entire period. No significant correlation in the initial stage, but a significant negative correlation in later stages was observed between the soluble protein and the dose of de-icing salt. LDs0 of this chloride agent on E. japonicus is 5 kg.(L·m2)-1 over 30 days.展开更多
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolvin...The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.展开更多
Zeeman effect at the hyperfine level of the rovibronic ground state of I35Cl are determined on the basis of |I1JF1I2FMF| via an effective Hamiltonian matrix diagonalization method. Perturbations of the Zeeman sub- l...Zeeman effect at the hyperfine level of the rovibronic ground state of I35Cl are determined on the basis of |I1JF1I2FMF| via an effective Hamiltonian matrix diagonalization method. Perturbations of the Zeeman sub- levels are observed and the perturbation selection rules are summarized as well. Several potential applications of such Zeeman effect are suggested.展开更多
Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dime...Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dimensional cloud resolving model sensitivity experiments of pre-summer torrential rainfall in June 2008. The analysis of time-mean data shows that the exclusion of radiative effects of liquid clouds reduces domain mean rain rate by decreasing convective rain rate mainly through the reduced convective-rainfall area associated with the strengthened hydrometeor gain in the presence of radiative effects of ice clouds, whereas it increases domain mean rain rate by enhancing convective rain rate mainly via the intensified convective rain intensity associated with the enhanced net condensation in the absence of radiative effects of ice clouds. The removal of radiative effects of ice clouds decreases domain mean rain rate by reducing stratiform rain rate through the suppressed stratiform rain intensity related to the suppressed net condensation in the presence of radiative effects of liquid clouds, whereas it increases domain mean rain rate by strengthening convective rain rate mainly via the enhanced convective rain intensity in response to the enhanced net condensation in the absence of radiative effects of liquid clouds. The elimination of microphysical effects of ice clouds suppresses domain mean rain rate by reducing stratiform rain rate through the reduced stratiform-rainfall area associated with severely reduced hydrometeor loss.展开更多
The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibriu...The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibrium sensitivity simulations. The model is imposed without large-scale vertical velocity. In the control experiment, the contribution from rainfall (cM) associated with net evaporation and hydrometeor loss/convergence is about 29% of that from the rainfall (Cm) associated with net condensation and hydrometeor gain/divergence and about 39% of that from the rainfall (CM) associated with net condensation and hydrometeor loss/convergence. The exclusion of ice clouds enhances rainfall contribution of CM, whereas it reduces rainfall contributions of Cm and cM. The removal of radiative effects of water clouds increases rainfall contribution of CM, barely changes rainfall contribution of Cm and reduces the rainfall contribution of cM in the presence of the radiative effects of ice clouds. Elimination of the radiative effects of water clouds reduces the rainfall contributions of CM and Cm, whereas it increases the rainfall contribution of cM in the absence of the radiative effects of ice clouds.展开更多
The radiative and microphysical effects of ice clouds on a torrential rainfall event over Hunan,China in June 2004 are investigated by analyzing the sensitivity of cloud-resolving model simulations.The model is initia...The radiative and microphysical effects of ice clouds on a torrential rainfall event over Hunan,China in June 2004 are investigated by analyzing the sensitivity of cloud-resolving model simulations.The model is initialized by zonally-uniform vertical velocity,zonal wind,horizontal temperature and vapor advection from National Centers for Environmental Prediction(NCEP) /National Center for Atmospheric Research(NCAR) reanalysis data.The exclusion of radiative effects of ice clouds increases model domain mean surface rain rates through the increase in the mean net condensation associated with the increase in the mean radiative cooling during the onset phase and the increases in the mean net condensation and the mean hydrometeor loss during the mature phase.The decrease in the mean rain rate corresponds to the decreased mean net condensation and associated mean latent heat release as the enhanced mean radiative cooling by the removal of radiative effects of ice clouds cools the mean local atmosphere during the decay phase.The removal of microphysical effects of ice clouds decreases the mean rain rates through the decrease in the mean net condensation during the onset phase,while the evolution of mean net condensation and the mean hydrometeor changes from decrease to increase during the mature phase.The reduction in the mean rain rate is primarily associated with the mean hydrometeor change in the absence of microphysical effects of ice clouds during the decay phase.展开更多
文摘目的探究及观察白葡奈氏菌片联合吸入糖皮质激素+长效β2受体激动剂(inhaled corticosteroid+long-acting β_(2)-agonist,ICS+LABA)治疗中重度慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)急性发作的疗效及对生活质量的影响。方法将2020年6月—2021年12月山东第一医科大学附属省立医院的80例中重度COPD急性发作患者根据随机数字表法分为2组。对照组的40例采用ICS+LABA进行治疗,观察组的40例则在对照组的基础上加用白葡奈氏菌片。比较2组的COPD治疗总有效率、不良反应发生率、治疗前后的症状体征积分、疾病状态[慢性阻塞性肺疾病评分(COPD assessment test,CAT评分)]及生活质量[世界卫生组织生存质量测定量表简表(World Health Organization on quality of life brief scale,WHOQOL-BREF评分)]。结果治疗1、2周后观察组的COPD治疗总有效率显著高于对照组,差异有统计学意义(P<0.05),2组的不良反应发生率比较,差异无统计学意义(P>0.05),治疗1、2周后观察组的COPD相关症状体征积分显著低于对照组,CAT评分构成则显著优于对照组,WHOQOL-BREF评分显著高于对照组,差异有统计学意义(P<0.05)。结论白葡奈氏菌片联合ICS+LABA治疗中重度COPD急性发作的疗效较好,且可显著改善患者的生活质量。
文摘Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype x environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal, embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore, the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean, The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.
文摘The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to model the water resisting pipe-phalanx within the jacket. The shielding factor for ice force corresponding to different conditions are given in this paper. The research indicates that there are many factors, including the longitudinal and lateral spacing between the front and back pile-row, ice attacking angle and the ratio of pile diameter to ice thickness, that influence the shielding effect on ice force.
基金financially supported by the Science Innovation Project of Beijing Forestry University (No. 101305)the 985 Innovation Platform, China
文摘In order to prevent severe pollution by de-icing salt on greenery along urban roads, a half lethal dose (LD_50)for a plant population was confirmed through stress simulation of chloride de-icing salt on Euonymus japonicus, with an ianalysis of physiological changes, statistics on mortality rate on plant populations and mathematic modeling during a 30- day subacute toxicity test. The results indicate that a significant positive correlation in the early stages and a significant negative correlation in the later stages were observed between the amount of chlorophyll a and b in plants and a cumulative dose of de-icing salt. The amounts of free proline in plants and the dose of de-icing salt were positively correlated Over the entire period. No significant correlation in the initial stage, but a significant negative correlation in later stages was observed between the soluble protein and the dose of de-icing salt. LDs0 of this chloride agent on E. japonicus is 5 kg.(L·m2)-1 over 30 days.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB417201)the National Natural Science Foundation of China (Grant Nos. 41075034,40930950,40975034,and 41075044)
文摘The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.
文摘Zeeman effect at the hyperfine level of the rovibronic ground state of I35Cl are determined on the basis of |I1JF1I2FMF| via an effective Hamiltonian matrix diagonalization method. Perturbations of the Zeeman sub- levels are observed and the perturbation selection rules are summarized as well. Several potential applications of such Zeeman effect are suggested.
基金National Natural Science Foundation of China(41475039,41775040)National Key Basic Research and Development Project of China(2015CB953601)
文摘Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dimensional cloud resolving model sensitivity experiments of pre-summer torrential rainfall in June 2008. The analysis of time-mean data shows that the exclusion of radiative effects of liquid clouds reduces domain mean rain rate by decreasing convective rain rate mainly through the reduced convective-rainfall area associated with the strengthened hydrometeor gain in the presence of radiative effects of ice clouds, whereas it increases domain mean rain rate by enhancing convective rain rate mainly via the intensified convective rain intensity associated with the enhanced net condensation in the absence of radiative effects of ice clouds. The removal of radiative effects of ice clouds decreases domain mean rain rate by reducing stratiform rain rate through the suppressed stratiform rain intensity related to the suppressed net condensation in the presence of radiative effects of liquid clouds, whereas it increases domain mean rain rate by strengthening convective rain rate mainly via the enhanced convective rain intensity in response to the enhanced net condensation in the absence of radiative effects of liquid clouds. The elimination of microphysical effects of ice clouds suppresses domain mean rain rate by reducing stratiform rain rate through the reduced stratiform-rainfall area associated with severely reduced hydrometeor loss.
基金Project supported by the National Key Basic Research and Development Project of China (Grant No.2012CB417201)the National Natural Sciences Foundation of China (Grant Nos.40930950 41075043,41275065,and 41075044)the 985 Program of Zhejiang University (Grant No.188020+193432602/215)
文摘The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibrium sensitivity simulations. The model is imposed without large-scale vertical velocity. In the control experiment, the contribution from rainfall (cM) associated with net evaporation and hydrometeor loss/convergence is about 29% of that from the rainfall (Cm) associated with net condensation and hydrometeor gain/divergence and about 39% of that from the rainfall (CM) associated with net condensation and hydrometeor loss/convergence. The exclusion of ice clouds enhances rainfall contribution of CM, whereas it reduces rainfall contributions of Cm and cM. The removal of radiative effects of water clouds increases rainfall contribution of CM, barely changes rainfall contribution of Cm and reduces the rainfall contribution of cM in the presence of the radiative effects of ice clouds. Elimination of the radiative effects of water clouds reduces the rainfall contributions of CM and Cm, whereas it increases the rainfall contribution of cM in the absence of the radiative effects of ice clouds.
基金National Natural Science Foundation of China (405750294077503640921160379)
文摘The radiative and microphysical effects of ice clouds on a torrential rainfall event over Hunan,China in June 2004 are investigated by analyzing the sensitivity of cloud-resolving model simulations.The model is initialized by zonally-uniform vertical velocity,zonal wind,horizontal temperature and vapor advection from National Centers for Environmental Prediction(NCEP) /National Center for Atmospheric Research(NCAR) reanalysis data.The exclusion of radiative effects of ice clouds increases model domain mean surface rain rates through the increase in the mean net condensation associated with the increase in the mean radiative cooling during the onset phase and the increases in the mean net condensation and the mean hydrometeor loss during the mature phase.The decrease in the mean rain rate corresponds to the decreased mean net condensation and associated mean latent heat release as the enhanced mean radiative cooling by the removal of radiative effects of ice clouds cools the mean local atmosphere during the decay phase.The removal of microphysical effects of ice clouds decreases the mean rain rates through the decrease in the mean net condensation during the onset phase,while the evolution of mean net condensation and the mean hydrometeor changes from decrease to increase during the mature phase.The reduction in the mean rain rate is primarily associated with the mean hydrometeor change in the absence of microphysical effects of ice clouds during the decay phase.