As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong held magnets. In this paper, a non...As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong held magnets. In this paper, a nonlinear mathematical model is presented to describe the deformation and buckling of D-type current-carrying coils, based on the Biot-Savart law and the bending theory of curved beams. The bending deformation, the critical value of current for the magnetoelastic buckling of the current-carrying coil, and the effects of the type and number of supports at middle part of the bending coil on the critical value are quantitatively investigated by a semi-analytical and semi-numerical method. The numerical results are shown to be in good agreement with the experimental data.展开更多
基金The project supported by the National Natural Science Foundation of Chinathe Science Foundation of the State Education Committee of China for Outstanding Teacher in Universities the Natural Science Foundation of Gansu Province of China
文摘As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong held magnets. In this paper, a nonlinear mathematical model is presented to describe the deformation and buckling of D-type current-carrying coils, based on the Biot-Savart law and the bending theory of curved beams. The bending deformation, the critical value of current for the magnetoelastic buckling of the current-carrying coil, and the effects of the type and number of supports at middle part of the bending coil on the critical value are quantitatively investigated by a semi-analytical and semi-numerical method. The numerical results are shown to be in good agreement with the experimental data.