In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrenc...In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.展开更多
Magnitude and distance of major potential source are needed in order to determine duration time of artificial ground motion and to determine the type of response spectrum (near field or far field) when using the seism...Magnitude and distance of major potential source are needed in order to determine duration time of artificial ground motion and to determine the type of response spectrum (near field or far field) when using the seismic intensity zonation map. The magnitude probabilistic distribution function of seismic belt and the magnitude and space joint distribution function for given intensity of the site in a potential Source are provided. Then the basicformula of calculating expected magnitude and expected distance are developed. Several examples for calculating expected magnitude and expected distance in northern China are discussed. These results show that expected magnitude and expected distance are related not only to geometry of potential source and magnitude but also to the intensity of the site with certain exceeding probability.展开更多
The current calibration function used in calculating the magnitude of natural earthquakes within 5km is a constant; a fact that causes several serious difficulties for the calculation of the magnitude of small and sha...The current calibration function used in calculating the magnitude of natural earthquakes within 5km is a constant; a fact that causes several serious difficulties for the calculation of the magnitude of small and shallow-focus earthquakes. According to the attenuation law of explosions and the propagation theory of elastic waves, the calibration function is calculated for near field quakes from 0km to 5km. Magnitudes of two aftershock sequences are calculated. The magnitudes of most explosion earthquakes are small, ranging mainly from magnitude -0.5 to 1.0. The M-t chart of the explosive aftershocks is completely different from that of strong earthquake aftershocks. It not only shows positive columnar lines indicating large magnitudes but also short negative columnar lines indicating small magnitudes.展开更多
基金Joint Seismological Science Foundation of China (103034) and Major Research "Research on Assessment of Seismic Safety" from China Earthquake Administration during the tenth Five-year Plan.
文摘In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.
文摘Magnitude and distance of major potential source are needed in order to determine duration time of artificial ground motion and to determine the type of response spectrum (near field or far field) when using the seismic intensity zonation map. The magnitude probabilistic distribution function of seismic belt and the magnitude and space joint distribution function for given intensity of the site in a potential Source are provided. Then the basicformula of calculating expected magnitude and expected distance are developed. Several examples for calculating expected magnitude and expected distance in northern China are discussed. These results show that expected magnitude and expected distance are related not only to geometry of potential source and magnitude but also to the intensity of the site with certain exceeding probability.
文摘The current calibration function used in calculating the magnitude of natural earthquakes within 5km is a constant; a fact that causes several serious difficulties for the calculation of the magnitude of small and shallow-focus earthquakes. According to the attenuation law of explosions and the propagation theory of elastic waves, the calibration function is calculated for near field quakes from 0km to 5km. Magnitudes of two aftershock sequences are calculated. The magnitudes of most explosion earthquakes are small, ranging mainly from magnitude -0.5 to 1.0. The M-t chart of the explosive aftershocks is completely different from that of strong earthquake aftershocks. It not only shows positive columnar lines indicating large magnitudes but also short negative columnar lines indicating small magnitudes.