Nonnegative matrix factorization (NMF) is a method to get parts-based features of information and form the typical profiles. But the basis vectors NMF gets are not orthogonal so that parts-based features of informatio...Nonnegative matrix factorization (NMF) is a method to get parts-based features of information and form the typical profiles. But the basis vectors NMF gets are not orthogonal so that parts-based features of information are usually redundancy. In this paper, we propose two different approaches based on localized non-negative matrix factorization (LNMF) to obtain the typical user session profiles and typical semantic profiles of junk mails. The LNMF get basis vectors as orthogonal as possible so that it can get accurate profiles. The experiments show that the approach based on LNMF can obtain better profiles than the approach based on NMF. Key words localized non-negative matrix factorization - profile - log mining - mail filtering CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373066, 60303024), National Grand Fundamental Research 973 Program of China (2002CB312000), National Research Foundation for the Doctoral Program of Higher Education of China (20020286004).Biography: Jiang Ji-xiang (1980-), male, Master candidate, research direction: data mining, knowledge representation on the Web.展开更多
文摘Nonnegative matrix factorization (NMF) is a method to get parts-based features of information and form the typical profiles. But the basis vectors NMF gets are not orthogonal so that parts-based features of information are usually redundancy. In this paper, we propose two different approaches based on localized non-negative matrix factorization (LNMF) to obtain the typical user session profiles and typical semantic profiles of junk mails. The LNMF get basis vectors as orthogonal as possible so that it can get accurate profiles. The experiments show that the approach based on LNMF can obtain better profiles than the approach based on NMF. Key words localized non-negative matrix factorization - profile - log mining - mail filtering CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373066, 60303024), National Grand Fundamental Research 973 Program of China (2002CB312000), National Research Foundation for the Doctoral Program of Higher Education of China (20020286004).Biography: Jiang Ji-xiang (1980-), male, Master candidate, research direction: data mining, knowledge representation on the Web.