Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
Considering the problems in the discrimination of fracture penetration and the evaluation of fracturing performance in the stimulation of thin sand-mud interbedded reservoirs in the eighth member of Shihezi Formation ...Considering the problems in the discrimination of fracture penetration and the evaluation of fracturing performance in the stimulation of thin sand-mud interbedded reservoirs in the eighth member of Shihezi Formation of Permian(He-8 Member)in the Sulige gas field,a geomechanical model of thin sand-mud interbedded reservoirs considering interlayer heterogeneity was established.The experiment of hydraulic fracture penetration was performed to reveal the mechanism of initiation–extension–interaction–penetration of hydraulic fractures in the thin sand-mud interbedded reservoirs.The unconventional fracture model was used to clarify the vertical initiation and extension characteristics of fractures in thin interbedded reservoirs through numerical simulation.The fracture penetration discrimination criterion and the fracturing performance evaluation method were developed.The results show that the interlayer stress difference is the main geological factor that directly affects the fracture morphology during hydraulic fracturing.When the interlayer stress difference coefficient is less than 0.4 in the Sulige gas field,the fractures can penetrate the barrier and extend in the target sandstone layer.When the interlayer stress difference coefficient is not less than 0.4 and less than 0.45,the factures can penetrate the barrier but cannot extend in the target sandstone layers.When the interlayer stress difference coefficient is greater than 0.45,the fractures only extend in the perforated reservoir,but not penetrate the layers.Increasing the viscosity and pump rates of the fracturing fluid can compensate for the energy loss and break through the barrier limit.The injection of high viscosity(50–100 mPa·s)fracturing fluid at high pump rates(12–18 m^(3)/min)is conducive to fracture penetration in the thin sand-mud interbedded reservoirs in the Sulige gas field.展开更多
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous...A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
The analytical structure of a typical fuzzy on - off controller that employs three or more triangular Input fuzzy sets, Zadeh fuzzy logic AND operator, fuzzy rules with singleton output fuzzy sets, and the centriod de...The analytical structure of a typical fuzzy on - off controller that employs three or more triangular Input fuzzy sets, Zadeh fuzzy logic AND operator, fuzzy rules with singleton output fuzzy sets, and the centriod defuzzifier is Investigated in this paper. The analytical expressions of the variable gains of the fuzzy controller are derived. The resulting explicit structure shows that the fuzzy controller is accurately a nonlinear PD - like controller with gains continuously changing with system output in different regions of input space.展开更多
A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe compli...A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.展开更多
The main geological factors controlling the accumulation and yield of marine-facies shale gas reservoirs are the focus of the current shale gas exploration and development research.In this study,the Wufeng-Longmaxi Fo...The main geological factors controlling the accumulation and yield of marine-facies shale gas reservoirs are the focus of the current shale gas exploration and development research.In this study,the Wufeng-Longmaxi Formation in the Dingshan area of southeast Sichuan was investigated.Shale cores underwent laboratory testing,which included the evaluation of total organic carbon(TOC),vitrinite reflectance(Ro),whole-rock X-ray diffraction(XRD),pore permeability,and imaging through field emission scanning electron microscopy(FE-SEM).Based on the results of natural gamma ray spectrum logging,conventional logging,imaging logging,and seismic coherence properties,the exploration and development potential of shale gas in the Dingshan area have been discussed comprehensively.The results showed that(1)layer No.4(WF2-LM4)of the Wufeng-Longmaxi Formation has a Th/U ratio<2 and a Th/K ratio of 3.5–12.Graptolites and pyrite are relatively abundant in the shale core,indicating sub-high-energy and low-energy marine-facies anoxic reducing environments.(2)The organic matter is mainly I-type kerogen with a small amount of II1-type kerogen.There is a good correlation among TOC,Ro,gas content,and brittle minerals;the fracturing property(brittleness)is 57.3%.Organic and inorganic pores are moderately developed.A higher pressure coefficient is correlated with the increase in porosity and the decrease in permeability.(3)The DY1 well of the shale gas reservoir was affected by natural defects and important latestage double destructive effects,and it is poorly preserved.The DY2 well is located far from the Qiyueshan Fault.Large faults are absent,and upward fractures in the Longmaxi Formation are poorly developed.The well is affected by low tectonic deformation intensity,and it is well preserved.(4)The Dingshan area is located at the junction of the two sedimentary centers of Jiaoshiba and Changning.The thickness of the high-quality shale interval(WF2-LM4)is relatively small,which may be an important reason for the unstable production of shale gas thus far.Based on the systematic analysis of the geological factors controlling high-yield shale gas enrichment in the Dingshan area,and the comparative analysis with the surrounding typical exploration areas,the geological understanding of marine shale gas enrichment in southern China has been improved.Therefore,this study can provide a useful reference for shale gas exploration and further development.展开更多
Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon...Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.展开更多
In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme...In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.展开更多
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geolog...Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.展开更多
Sandi Arabia is renown for its rich oil and gas Mesozoic. However, the discovery of Paleozoic fields in resources with the bulk of the reserves reservo/red in the the late 1980s has encouraged further exploration in t...Sandi Arabia is renown for its rich oil and gas Mesozoic. However, the discovery of Paleozoic fields in resources with the bulk of the reserves reservo/red in the the late 1980s has encouraged further exploration in the Paleozoic. This paper reviews the salient features of the Paleozoic petroleum geology in central Saudi Arabia and discusses the main factors controlling hydrocarbon accumulation in the Paleozoic. The Lower Silurian Qusaiba hot shale is the principal source rock for the hydrocarbons discovered in the Ordovician to Permian reservoirs. Of them, the Permo- Carboniferous Unayzah and Upper Ordovician Sarah Formations have the best exploration potential. The key factors controlling hydrocarbon accumulation in the Unayzah Formation are migration pathways and reservoir petrophysics. The key factors controlling hydrocarbon accumulation in the Sarah Formation are reservoir petrophysics and the development of structural traps.展开更多
Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relati...Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relationship with production wells in fracture-cavity carbonate reservoirs were studied systematically, the influence of them on the distribution of residual oil was analyzed, and the main controlling factors mode of residual oil distribution after water flooding was established. Enhanced oil recovery methods were studied considering the development practice of Tahe oilfield. Research shows that the main controlling factors of residual oil distribution after water flooding in fracture-cavity carbonate reservoirs can be classified into four categories: local high point, insufficient well control, flow channel shielding and weak hydrodynamic. It is a systematic project to improve oil recovery in fracture-cavity carbonate reservoirs. In the stage of natural depletion, production should be well regulated to prevent bottom water channeling. In the early stage of waterflooding, injection-production relationship should be constructed according to reservoir type, connectivity and spatial location to enhance control and producing degree of waterflooding and minimize remaining oil. In the middle and late stage, according to the main controlling factors and distribution characteristics of remaining oil after water flooding, remaining oil should be tapped precisely by making use of gravity differentiation and capillary force imbibition, enhancing well control, disturbing the flow field and so on. Meanwhile, backup technologies of reservoir stimulation, new injection media, intelligent optimization etc. should be developed, smooth shift from water injection to gas injection should be ensured to maximize oil recovery.展开更多
Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- a...Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.展开更多
North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one ...North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one structural domain to another areally and from one stratigraphic interval to another vertically. Analyses of the essential elements and geological processes of the Paleozoic petroleum system indicate that the distribution of the Lower Silurian shale source rocks, the development of a thick Mesozoic overburden, the presence of the Upper Triassic-Lower Jurassic evaporite seal are the most important factors goveming the distribution of the Paleozoic-sourced hydrocarbons in North Africa. The Mesozoic sequence plays a critical role for hydrocarbons to accumulate by enabling the maturation of the Paleozoic source rocks during the Mesozoic-Paleogene times and preserving the accumulated hydrocarbons. Basins and surrounding uplifts, particularly the latter, with a thick Mesozoic sequence and a regional evaporite seal generally have abundant hydrocarbons. Basins where only a thin Mesozoic overburden was developed tend to have a very poor to moderate hydrocarbon prospectivity.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
基金Supported by the National Key Research and Development Program of China(2022YFE0129800)CNPC and China University of Petroleum(Beijing)Strategic Cooperation Science and Technology Special Project(ZLZX2020-02)。
文摘Considering the problems in the discrimination of fracture penetration and the evaluation of fracturing performance in the stimulation of thin sand-mud interbedded reservoirs in the eighth member of Shihezi Formation of Permian(He-8 Member)in the Sulige gas field,a geomechanical model of thin sand-mud interbedded reservoirs considering interlayer heterogeneity was established.The experiment of hydraulic fracture penetration was performed to reveal the mechanism of initiation–extension–interaction–penetration of hydraulic fractures in the thin sand-mud interbedded reservoirs.The unconventional fracture model was used to clarify the vertical initiation and extension characteristics of fractures in thin interbedded reservoirs through numerical simulation.The fracture penetration discrimination criterion and the fracturing performance evaluation method were developed.The results show that the interlayer stress difference is the main geological factor that directly affects the fracture morphology during hydraulic fracturing.When the interlayer stress difference coefficient is less than 0.4 in the Sulige gas field,the fractures can penetrate the barrier and extend in the target sandstone layer.When the interlayer stress difference coefficient is not less than 0.4 and less than 0.45,the factures can penetrate the barrier but cannot extend in the target sandstone layers.When the interlayer stress difference coefficient is greater than 0.45,the fractures only extend in the perforated reservoir,but not penetrate the layers.Increasing the viscosity and pump rates of the fracturing fluid can compensate for the energy loss and break through the barrier limit.The injection of high viscosity(50–100 mPa·s)fracturing fluid at high pump rates(12–18 m^(3)/min)is conducive to fracture penetration in the thin sand-mud interbedded reservoirs in the Sulige gas field.
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金Project(JC200903180555A) supported by Shenzhen City Science and Technology Plan, China
文摘A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
文摘The analytical structure of a typical fuzzy on - off controller that employs three or more triangular Input fuzzy sets, Zadeh fuzzy logic AND operator, fuzzy rules with singleton output fuzzy sets, and the centriod defuzzifier is Investigated in this paper. The analytical expressions of the variable gains of the fuzzy controller are derived. The resulting explicit structure shows that the fuzzy controller is accurately a nonlinear PD - like controller with gains continuously changing with system output in different regions of input space.
文摘A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.
基金The Open Fund (PLC20180404) of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)The Open Fund (PLN 201718) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)The Open Fund(SEC-2018-04)of Collaborative Innovation Center of Shale Gas Resources and Environment (Southwest Petroleum University)
文摘The main geological factors controlling the accumulation and yield of marine-facies shale gas reservoirs are the focus of the current shale gas exploration and development research.In this study,the Wufeng-Longmaxi Formation in the Dingshan area of southeast Sichuan was investigated.Shale cores underwent laboratory testing,which included the evaluation of total organic carbon(TOC),vitrinite reflectance(Ro),whole-rock X-ray diffraction(XRD),pore permeability,and imaging through field emission scanning electron microscopy(FE-SEM).Based on the results of natural gamma ray spectrum logging,conventional logging,imaging logging,and seismic coherence properties,the exploration and development potential of shale gas in the Dingshan area have been discussed comprehensively.The results showed that(1)layer No.4(WF2-LM4)of the Wufeng-Longmaxi Formation has a Th/U ratio<2 and a Th/K ratio of 3.5–12.Graptolites and pyrite are relatively abundant in the shale core,indicating sub-high-energy and low-energy marine-facies anoxic reducing environments.(2)The organic matter is mainly I-type kerogen with a small amount of II1-type kerogen.There is a good correlation among TOC,Ro,gas content,and brittle minerals;the fracturing property(brittleness)is 57.3%.Organic and inorganic pores are moderately developed.A higher pressure coefficient is correlated with the increase in porosity and the decrease in permeability.(3)The DY1 well of the shale gas reservoir was affected by natural defects and important latestage double destructive effects,and it is poorly preserved.The DY2 well is located far from the Qiyueshan Fault.Large faults are absent,and upward fractures in the Longmaxi Formation are poorly developed.The well is affected by low tectonic deformation intensity,and it is well preserved.(4)The Dingshan area is located at the junction of the two sedimentary centers of Jiaoshiba and Changning.The thickness of the high-quality shale interval(WF2-LM4)is relatively small,which may be an important reason for the unstable production of shale gas thus far.Based on the systematic analysis of the geological factors controlling high-yield shale gas enrichment in the Dingshan area,and the comparative analysis with the surrounding typical exploration areas,the geological understanding of marine shale gas enrichment in southern China has been improved.Therefore,this study can provide a useful reference for shale gas exploration and further development.
基金granted by the Important National Science&Technology Specific Projects(grants No.2011ZX05006-003 and 2016ZX05006-003)the National Natural Science Foundation(grant No.41372132)
文摘Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.
基金provided by the National Key Basic Research Program of China (No. 2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51421003)the Jiangsu Province Ordinary University Graduate Student Scientific Research Innovation Projects (No. KYLX16_0564)
文摘In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.
基金supported by the National Natural Science Foundation of China(41977258)the National Key Research and Development Program of China(2017YFC1501005 and 2018YFC1504704)。
文摘Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.
文摘Sandi Arabia is renown for its rich oil and gas Mesozoic. However, the discovery of Paleozoic fields in resources with the bulk of the reserves reservo/red in the the late 1980s has encouraged further exploration in the Paleozoic. This paper reviews the salient features of the Paleozoic petroleum geology in central Saudi Arabia and discusses the main factors controlling hydrocarbon accumulation in the Paleozoic. The Lower Silurian Qusaiba hot shale is the principal source rock for the hydrocarbons discovered in the Ordovician to Permian reservoirs. Of them, the Permo- Carboniferous Unayzah and Upper Ordovician Sarah Formations have the best exploration potential. The key factors controlling hydrocarbon accumulation in the Unayzah Formation are migration pathways and reservoir petrophysics. The key factors controlling hydrocarbon accumulation in the Sarah Formation are reservoir petrophysics and the development of structural traps.
基金Supported by the China National Science and Technology Major Project(2016ZX05014)
文摘Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relationship with production wells in fracture-cavity carbonate reservoirs were studied systematically, the influence of them on the distribution of residual oil was analyzed, and the main controlling factors mode of residual oil distribution after water flooding was established. Enhanced oil recovery methods were studied considering the development practice of Tahe oilfield. Research shows that the main controlling factors of residual oil distribution after water flooding in fracture-cavity carbonate reservoirs can be classified into four categories: local high point, insufficient well control, flow channel shielding and weak hydrodynamic. It is a systematic project to improve oil recovery in fracture-cavity carbonate reservoirs. In the stage of natural depletion, production should be well regulated to prevent bottom water channeling. In the early stage of waterflooding, injection-production relationship should be constructed according to reservoir type, connectivity and spatial location to enhance control and producing degree of waterflooding and minimize remaining oil. In the middle and late stage, according to the main controlling factors and distribution characteristics of remaining oil after water flooding, remaining oil should be tapped precisely by making use of gravity differentiation and capillary force imbibition, enhancing well control, disturbing the flow field and so on. Meanwhile, backup technologies of reservoir stimulation, new injection media, intelligent optimization etc. should be developed, smooth shift from water injection to gas injection should be ensured to maximize oil recovery.
基金supported by the National Natural Science Foundation of China(10172095 and 10672183)
文摘Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.
文摘North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one structural domain to another areally and from one stratigraphic interval to another vertically. Analyses of the essential elements and geological processes of the Paleozoic petroleum system indicate that the distribution of the Lower Silurian shale source rocks, the development of a thick Mesozoic overburden, the presence of the Upper Triassic-Lower Jurassic evaporite seal are the most important factors goveming the distribution of the Paleozoic-sourced hydrocarbons in North Africa. The Mesozoic sequence plays a critical role for hydrocarbons to accumulate by enabling the maturation of the Paleozoic source rocks during the Mesozoic-Paleogene times and preserving the accumulated hydrocarbons. Basins and surrounding uplifts, particularly the latter, with a thick Mesozoic sequence and a regional evaporite seal generally have abundant hydrocarbons. Basins where only a thin Mesozoic overburden was developed tend to have a very poor to moderate hydrocarbon prospectivity.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.