Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon...Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.展开更多
Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling fact...Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.展开更多
Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon a...Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.展开更多
In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main contr...In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.展开更多
Based on the exploration and development practice of marine shale gas in Fuling, Weiyuan, Changning, Luzhou and Southeast Chongqing in southern China, combined with experiments and analysis, six factors controlling di...Based on the exploration and development practice of marine shale gas in Fuling, Weiyuan, Changning, Luzhou and Southeast Chongqing in southern China, combined with experiments and analysis, six factors controlling differential enrichment of marine shale gas are summarized as follows:(1) The more appropriate thermal evolution and the higher the abundance of organic matter, the higher the adsorption and total gas content of shale will be.(2) Kerogen pyrolysis and liquid hydrocarbon cracking provide most of the marine shale gas.(3) The specific surface area and pore volume of organic matter rich shale increased first and then decreased with the increase of thermal evolution degree of organic shale. At Ro between 2.23% and 3.33%, the shale reservoirs are mainly oil-wet, which is conducive to the enrichment of shale gas.(4) The thicker the roof and floor, the higher the shale gas content. The longer the last tectonic uplift time and the greater the uplift amplitude, the greater the loss of shale gas will be.(5) The buried depth and dip angle of the stratum have different controlling and coupling effects on shale gas in different tectonic positions, resulting in two differential enrichment models of shale gas.(6) The effective and comprehensive matching of source, reservoir and preservation conditions determines the quality of shale gas accumulation. Good match of effective gas generating amount and time, moderate pore evolution and good preservation conditions in space and time is essential for the enrichment of shale gas.展开更多
Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source k...Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.展开更多
Located in the middle of the Tarim Basin, Tazhong is a typical area of compound reservoirs rich in oil and gas found in the Carboniferous, Silurian and Ordovician strata. The proved, probable and possible reserves (3...Located in the middle of the Tarim Basin, Tazhong is a typical area of compound reservoirs rich in oil and gas found in the Carboniferous, Silurian and Ordovician strata. The proved, probable and possible reserves (3P reserves) in the area amount to 5×108 tons, so it is of great significance to study the advances and problems in hydrocarbon exploration in the Tazhong area. On the basis of exploration history and analysis of scientific problems, we outline eight achievements: distribution characteristics of reservoirs, stages of reservoir formation, different sources of oil and gas and their respective contributions, the effective regional caprock and reservoir-caprock combinations dominating the vertical distribution of hydrocarbon reservoirs, the control of the Tazhong Palaeo-uplift on reservoir formation and establishing geologic models, structure balance belts influencing the reconstruction and residual potential of reservoirs after accumulation, the rules and mechanisms of fractures controlling oil and gas, and the types of favorable reservoirs and their characteristics of controlling oil and gas distribution. We further point out the main problems about the oil and gas exploration in the Tazhong area and put forward some relevant proposals.展开更多
Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the prim...Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.展开更多
Combined with oil and gas transport and accumulation, structure-lithology evolution history, and with geochemistry and synthesizing geology methods, this paper studies the oil and gas discharge history of Puguang larg...Combined with oil and gas transport and accumulation, structure-lithology evolution history, and with geochemistry and synthesizing geology methods, this paper studies the oil and gas discharge history of Puguang large scale gas field and the main controlling factors of oil accumulation. The natural gas in Puguang gas field is mainly coal-derived gas and oil-racked gas. The main hydrocarbon is Upper Permian coal mudstone and Lower Silurian mud shale with organic material. Puguang gas field has gone through discharge and adjustment 3 times, and it has favorable palaeostructure location, high quality dredge and effectively conserving conditions.展开更多
下刚果—刚果扇盆地为深水浊积岩油气勘探成功的典型含油气盆地。盆内广泛发育的浊积水道为重要储层类型,蕴含丰富的油气资源。前人从构造和沉积等角度对深水水道沉积模式及控制因素进行了大量研究,取得了长足进展(Henry et al.,2019;...下刚果—刚果扇盆地为深水浊积岩油气勘探成功的典型含油气盆地。盆内广泛发育的浊积水道为重要储层类型,蕴含丰富的油气资源。前人从构造和沉积等角度对深水水道沉积模式及控制因素进行了大量研究,取得了长足进展(Henry et al.,2019;陈华等,2021)。然而也有大量实钻资料表明水道体系内部砂体期次的沉积发育和叠置关系非常复杂,储层非均质性很强(张文彪等,2017)。展开更多
基金granted by the Important National Science&Technology Specific Projects(grants No.2011ZX05006-003 and 2016ZX05006-003)the National Natural Science Foundation(grant No.41372132)
文摘Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.
基金Supported by the China National Science and Technology Major Project(2011ZX05023-006-002,2016ZX05024-003).
文摘Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.
基金Supported by the China Science and Technology Major Project(2017ZX05008-004-001,2017ZX05001-001)Chinese Academy of Sciences Strategic Pilot Project(XDA14010302)
文摘Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.
文摘In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.
基金Supported by the China National Science and Technology Major Project(2017ZX05035002)the National Natural Science Foundation of China(41872135,41802153)
文摘Based on the exploration and development practice of marine shale gas in Fuling, Weiyuan, Changning, Luzhou and Southeast Chongqing in southern China, combined with experiments and analysis, six factors controlling differential enrichment of marine shale gas are summarized as follows:(1) The more appropriate thermal evolution and the higher the abundance of organic matter, the higher the adsorption and total gas content of shale will be.(2) Kerogen pyrolysis and liquid hydrocarbon cracking provide most of the marine shale gas.(3) The specific surface area and pore volume of organic matter rich shale increased first and then decreased with the increase of thermal evolution degree of organic shale. At Ro between 2.23% and 3.33%, the shale reservoirs are mainly oil-wet, which is conducive to the enrichment of shale gas.(4) The thicker the roof and floor, the higher the shale gas content. The longer the last tectonic uplift time and the greater the uplift amplitude, the greater the loss of shale gas will be.(5) The buried depth and dip angle of the stratum have different controlling and coupling effects on shale gas in different tectonic positions, resulting in two differential enrichment models of shale gas.(6) The effective and comprehensive matching of source, reservoir and preservation conditions determines the quality of shale gas accumulation. Good match of effective gas generating amount and time, moderate pore evolution and good preservation conditions in space and time is essential for the enrichment of shale gas.
文摘Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2006CB202308)
文摘Located in the middle of the Tarim Basin, Tazhong is a typical area of compound reservoirs rich in oil and gas found in the Carboniferous, Silurian and Ordovician strata. The proved, probable and possible reserves (3P reserves) in the area amount to 5×108 tons, so it is of great significance to study the advances and problems in hydrocarbon exploration in the Tazhong area. On the basis of exploration history and analysis of scientific problems, we outline eight achievements: distribution characteristics of reservoirs, stages of reservoir formation, different sources of oil and gas and their respective contributions, the effective regional caprock and reservoir-caprock combinations dominating the vertical distribution of hydrocarbon reservoirs, the control of the Tazhong Palaeo-uplift on reservoir formation and establishing geologic models, structure balance belts influencing the reconstruction and residual potential of reservoirs after accumulation, the rules and mechanisms of fractures controlling oil and gas, and the types of favorable reservoirs and their characteristics of controlling oil and gas distribution. We further point out the main problems about the oil and gas exploration in the Tazhong area and put forward some relevant proposals.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05009-002)
文摘Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.
基金the National Key Basic Research and Development Program of China (Grant No. 2001CB209100)
文摘Combined with oil and gas transport and accumulation, structure-lithology evolution history, and with geochemistry and synthesizing geology methods, this paper studies the oil and gas discharge history of Puguang large scale gas field and the main controlling factors of oil accumulation. The natural gas in Puguang gas field is mainly coal-derived gas and oil-racked gas. The main hydrocarbon is Upper Permian coal mudstone and Lower Silurian mud shale with organic material. Puguang gas field has gone through discharge and adjustment 3 times, and it has favorable palaeostructure location, high quality dredge and effectively conserving conditions.
文摘下刚果—刚果扇盆地为深水浊积岩油气勘探成功的典型含油气盆地。盆内广泛发育的浊积水道为重要储层类型,蕴含丰富的油气资源。前人从构造和沉积等角度对深水水道沉积模式及控制因素进行了大量研究,取得了长足进展(Henry et al.,2019;陈华等,2021)。然而也有大量实钻资料表明水道体系内部砂体期次的沉积发育和叠置关系非常复杂,储层非均质性很强(张文彪等,2017)。