Two isomers of a sandwich-type anion [Ge_(9)-In-Ge_(9)]^(5–) were synthesized by controlling the chelating agents (2,2,2-crypt/18-C-6). Further reactions with early/late transition metal complexes, Mo(CO)_(6) and Ni(...Two isomers of a sandwich-type anion [Ge_(9)-In-Ge_(9)]^(5–) were synthesized by controlling the chelating agents (2,2,2-crypt/18-C-6). Further reactions with early/late transition metal complexes, Mo(CO)_(6) and Ni(COD)_(2), respectively, yielded two new types of inorganic sandwich derivatives: a half-sandwich cluster [Ge_(9)-In-Mo(CO)_(5)]^(3–) with a low-valence In(I) center and an unsymmetrical sandwich-type cluster {[(Ni@Ge_(9))In(Ni_(0.648)@Ge_(9))]}^(5–) due to the insertion of Ni atoms, respectively. The isolation of these new derivatives demonstrates the reactivity of sandwich-type [Ge_(9)-In-Ge_(9)]^(5–) acting as the precursor, which provides some enlightenment for constructing new inorganic sandwich compounds.展开更多
Synthesis of stable main-group element-based radicals represents one of the most interesting topics in contemporary organometallic chem- istry, because of their vital roles in organic, inorganic and biological chemist...Synthesis of stable main-group element-based radicals represents one of the most interesting topics in contemporary organometallic chem- istry, because of their vital roles in organic, inorganic and biological chemistry as well as materials science. However, the access of stable main-group element-based radicals is highly challenging owing to the lack of energetically accessible orbitals in the main-group elements. During the last decades, several synthetic strategies have been developed in obtaining these reactive species. Among them, utilizing the stericaliy demanding substituents and x-conjugated ligands has proven to be an effective approach. Weakly coordinating ions (WCAs) have also been found to be exceptionally practical in synthesizing radical cations of main-group elements. By introducing these stabilization methods, we have successfully prepared a variety of radical ions of p-block elements in the crystalline forms, and investigated their properties by different experimental and quantum chemical calculation methods. According to the investigations, magnetic stability was observed, resulting from the intramolecular electron-exchange interaction. Furthermore, we also found that the singlet-triptet energy gaps of the bis(triarylamine) diradical dications can be tunable by varying the temperature. These investigations open new avenues of the main-group element-based radicals for a large variety of applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.92161102 and 21971118)the Nat-ural Science Foundation of Tianjin City(Nos.21JCZXJC00140 and 20JCYBJC01560)as well as the 111 project(B18030)from Ministry of Education China to Z.M.S.and the Tianjin Research Innovation Project for Postgraduate Students(2020YJSB150)the Ph.D.Can-didate Research Innovation Fund of NKU School of Materials Sci-ence and Engineering to H.-L.X.
文摘Two isomers of a sandwich-type anion [Ge_(9)-In-Ge_(9)]^(5–) were synthesized by controlling the chelating agents (2,2,2-crypt/18-C-6). Further reactions with early/late transition metal complexes, Mo(CO)_(6) and Ni(COD)_(2), respectively, yielded two new types of inorganic sandwich derivatives: a half-sandwich cluster [Ge_(9)-In-Mo(CO)_(5)]^(3–) with a low-valence In(I) center and an unsymmetrical sandwich-type cluster {[(Ni@Ge_(9))In(Ni_(0.648)@Ge_(9))]}^(5–) due to the insertion of Ni atoms, respectively. The isolation of these new derivatives demonstrates the reactivity of sandwich-type [Ge_(9)-In-Ge_(9)]^(5–) acting as the precursor, which provides some enlightenment for constructing new inorganic sandwich compounds.
基金We thank the National Key R&D Program of China (Grant 2016YFA0300404, X.W.) and the National Natural Science Foundation of China (Grants 21525102, 21690062, X.W. and 21601082, G.T.) for financial support. Dr. Li Zhang is acknowledged for proofreading the manuscript.
文摘Synthesis of stable main-group element-based radicals represents one of the most interesting topics in contemporary organometallic chem- istry, because of their vital roles in organic, inorganic and biological chemistry as well as materials science. However, the access of stable main-group element-based radicals is highly challenging owing to the lack of energetically accessible orbitals in the main-group elements. During the last decades, several synthetic strategies have been developed in obtaining these reactive species. Among them, utilizing the stericaliy demanding substituents and x-conjugated ligands has proven to be an effective approach. Weakly coordinating ions (WCAs) have also been found to be exceptionally practical in synthesizing radical cations of main-group elements. By introducing these stabilization methods, we have successfully prepared a variety of radical ions of p-block elements in the crystalline forms, and investigated their properties by different experimental and quantum chemical calculation methods. According to the investigations, magnetic stability was observed, resulting from the intramolecular electron-exchange interaction. Furthermore, we also found that the singlet-triptet energy gaps of the bis(triarylamine) diradical dications can be tunable by varying the temperature. These investigations open new avenues of the main-group element-based radicals for a large variety of applications.