The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design proced...The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design.展开更多
A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classica...A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
Considering generator rotor and valve by external disturbances for turbine regulating system, the nonlinear large disturbance attenuation controller and parameter updating law of turbine speed governor system are desi...Considering generator rotor and valve by external disturbances for turbine regulating system, the nonlinear large disturbance attenuation controller and parameter updating law of turbine speed governor system are designed using backstepping method. The controller not only considers transmission line parameter uncer-tainty, and has attenuated the influences of large external disturbances on system output. The nonlinear con-troller does not have the sensitivity to the influences of external disturbances, but also has strong robustness for system parameters variation, which is because of the transmission line uncertainty being considered in internal disturbances. The simulation results show that the control effect of the large disturbance attenuation controller more advantages by comparing with the control performance of conventional nonlinear robust controller.展开更多
An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test ri...An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test rig. The investigation shows that flow coefficient is 30% up more than that of the control valve of GX-1 type used widely in domestic power plants now, as small-medium lifts. If the relative lift (h/D) is less than 20%, the valve can always work steadily in all the pressure ratios. When the h/D is between 20% to 24%, big vibration of valve stem occurs if the pressure ratio is between 0.7 to 0.8. When h/D is more than 25%, relatively great vibration happens in a wide range of pressure ratios of 0.4 to 0.85.展开更多
Valve management is one of the major functions of DEH for steam turbine. It has an important practical significance for the security and economy of the steam turbine. This paper starts from the valve configuration fig...Valve management is one of the major functions of DEH for steam turbine. It has an important practical significance for the security and economy of the steam turbine. This paper starts from the valve configuration figure of the domestic-type 300 MW steam turbine, and then makes a simple comparison between the two types of valve governing modes. In order to realize the valve control, the structure of control system has been established, in which the roles of the mathematical functions are discussed. On the basis of the experiment of valve flow characteristic, this article carries out a quantitative study on the functions of the valve management and the parameter tuning method. Through a serious corrections, the sequence valve flow characteristic curve is obtained, which can provide significant guidance on the research of valve management of the similar steam turbines.展开更多
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving con...A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.展开更多
Using the Hamiltonian function method, this paper proposes a family of robust adaptive excitation con- trollers for synchronous generators with steam valve control. First, a parameterization method of robust adaptive ...Using the Hamiltonian function method, this paper proposes a family of robust adaptive excitation con- trollers for synchronous generators with steam valve control. First, a parameterization method of robust adaptive controllers is investigated for dissipative Hamiltonian systems. This method avoids solving Hamilton-Jacobi-Issacs inequalities. The parameters in the family of controllers thus obtained are determined by a locally positive semidefinite function, which has only 2n independent variables, twice as many as the one used to characterize the state feedback. Then, with the parame- terization method and the structural properties of dissipative Hamiltonian systems, a family of robust adaptive excitation controllers is designed for synchronous generators with steam valve control, disturbances and unknown parameters. Simu- lations illustrate the effectiveness and feasibility of the excitation control strategy proposed in the paper.展开更多
With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(...With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(PFCA)was proposed.First,based on the coupling model of the coordinated control system(CCS)and digital electro-hydraulic control system(DEH),principle and control mode of the PFC were introduced in detail.The simulation results showed that the PFC of the CCS and DEH was the most effective control mode.Then,the analysis of the CCS model and variable condition revealed the internal relationship among main steam pressure,valve opening and power.In term of this,the radial basis function(RBF)neural network was established to estimate the PFCA.Because the simulation curves fit well with the actual curves,the accuracy of the coupling model was verified.On this basis,simulation data was produced by coupling model to verify the proposed evaluation method.The low predication error of main steam pressure,power and the PFCA indicated that the method was effective.In addition,the actual data obtained from historical operation data were used to estimate the PFCA accurately,which was the strongest evidence for this method.展开更多
基金supported by the National Natural Science Foundation of China(No.60874024,90816028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200801450019)
文摘The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design.
基金This work was supported by the National Natural Science Foundation of China (No. 60574013).
文摘A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
文摘Considering generator rotor and valve by external disturbances for turbine regulating system, the nonlinear large disturbance attenuation controller and parameter updating law of turbine speed governor system are designed using backstepping method. The controller not only considers transmission line parameter uncer-tainty, and has attenuated the influences of large external disturbances on system output. The nonlinear con-troller does not have the sensitivity to the influences of external disturbances, but also has strong robustness for system parameters variation, which is because of the transmission line uncertainty being considered in internal disturbances. The simulation results show that the control effect of the large disturbance attenuation controller more advantages by comparing with the control performance of conventional nonlinear robust controller.
基金This work was supported by National Natural Science Foundations of China (No503360501,50323001)
文摘An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test rig. The investigation shows that flow coefficient is 30% up more than that of the control valve of GX-1 type used widely in domestic power plants now, as small-medium lifts. If the relative lift (h/D) is less than 20%, the valve can always work steadily in all the pressure ratios. When the h/D is between 20% to 24%, big vibration of valve stem occurs if the pressure ratio is between 0.7 to 0.8. When h/D is more than 25%, relatively great vibration happens in a wide range of pressure ratios of 0.4 to 0.85.
文摘Valve management is one of the major functions of DEH for steam turbine. It has an important practical significance for the security and economy of the steam turbine. This paper starts from the valve configuration figure of the domestic-type 300 MW steam turbine, and then makes a simple comparison between the two types of valve governing modes. In order to realize the valve control, the structure of control system has been established, in which the roles of the mathematical functions are discussed. On the basis of the experiment of valve flow characteristic, this article carries out a quantitative study on the functions of the valve management and the parameter tuning method. Through a serious corrections, the sequence valve flow characteristic curve is obtained, which can provide significant guidance on the research of valve management of the similar steam turbines.
文摘A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.
基金supported by the National Key Basic Research Project of China (No.2004CB318000)the National Natural Science Foundation of China (No.10571095)
文摘Using the Hamiltonian function method, this paper proposes a family of robust adaptive excitation con- trollers for synchronous generators with steam valve control. First, a parameterization method of robust adaptive controllers is investigated for dissipative Hamiltonian systems. This method avoids solving Hamilton-Jacobi-Issacs inequalities. The parameters in the family of controllers thus obtained are determined by a locally positive semidefinite function, which has only 2n independent variables, twice as many as the one used to characterize the state feedback. Then, with the parame- terization method and the structural properties of dissipative Hamiltonian systems, a family of robust adaptive excitation controllers is designed for synchronous generators with steam valve control, disturbances and unknown parameters. Simu- lations illustrate the effectiveness and feasibility of the excitation control strategy proposed in the paper.
基金supported by the Electric Power Research Institute of State Grid Corporation of China in Zhejiang province。
文摘With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(PFCA)was proposed.First,based on the coupling model of the coordinated control system(CCS)and digital electro-hydraulic control system(DEH),principle and control mode of the PFC were introduced in detail.The simulation results showed that the PFC of the CCS and DEH was the most effective control mode.Then,the analysis of the CCS model and variable condition revealed the internal relationship among main steam pressure,valve opening and power.In term of this,the radial basis function(RBF)neural network was established to estimate the PFCA.Because the simulation curves fit well with the actual curves,the accuracy of the coupling model was verified.On this basis,simulation data was produced by coupling model to verify the proposed evaluation method.The low predication error of main steam pressure,power and the PFCA indicated that the method was effective.In addition,the actual data obtained from historical operation data were used to estimate the PFCA accurately,which was the strongest evidence for this method.