Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall co...Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.展开更多
Hydropower resources in river basins are typically developed in a cascade manner. The cascade hydropower stations use water from the same river; in a sense, they form a cluster of hydropower stations which are linked ...Hydropower resources in river basins are typically developed in a cascade manner. The cascade hydropower stations use water from the same river; in a sense, they form a cluster of hydropower stations which are linked together by the river stream. The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station. Without doubt, unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulfill the objectives in the development of river basin. As a result, more and more river-basin cascade power stations around the world implement unif ied dispatching.展开更多
文摘Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.
文摘Hydropower resources in river basins are typically developed in a cascade manner. The cascade hydropower stations use water from the same river; in a sense, they form a cluster of hydropower stations which are linked together by the river stream. The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station. Without doubt, unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulfill the objectives in the development of river basin. As a result, more and more river-basin cascade power stations around the world implement unif ied dispatching.