THE girls in my college were fond of forming cliques,I admit,I was one of them.We dined together,studied together,and if we fell out,factions broke off until we got over whatever grudge we were holding and the gang co...THE girls in my college were fond of forming cliques,I admit,I was one of them.We dined together,studied together,and if we fell out,factions broke off until we got over whatever grudge we were holding and the gang could reform.In Dorm 315,there were two groups among the six girls:one included five girls,Wu Shasha,Tan Fang,Zeng Li,Liu Siqi and me;the other,had only one member,Lu Xiaolu.We had to admit that展开更多
DURING Hillary Clinton's recent seven- nation visit to Africa, the fiery U.S. Secretary of State did not fail to delight Western media by throwing an expected barb in Chinas direction.
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on m...Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.展开更多
Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooper...Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooperative behavior management assumed that the maximumdegree of cooperation of experts is to totally accept the revisions suggested by the moderator,which restricted individuals with altruistic behaviors to make more contributions in the agreement-reaching process.In addition,when grouping a large group into subgroups by clustering methods,existing studies were based on the similarity of evaluation values or trust relationships among experts separately but did not consider them simultaneously.In this study,we introduce a clustering method considering the similarity of evaluation values and the trust relations of experts and then develop a consensusmodel taking into account the altruistic behaviors of experts.First,we cluster experts into subgroups by a constrained Kmeans clustering algorithm according to the opinion similarity and trust relationship of experts.Then,we calculate the weights of experts and clusters based on the centrality degrees of experts.Next,to enhance the quality of consensus reaching,we identify three kinds of non-cooperative behaviors and propose corresponding feedback mechanisms relying on the altruistic behaviors of experts.A numerical example is given to show the effectiveness and practicality of the proposed method in emergency decision-making.The study finds that integrating altruistic behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of decision-making information.展开更多
The design process of the built environment relies on the collaborative effort of all parties involved in the project.During the design phase,owners,end users,and their representatives are expected to make the most cr...The design process of the built environment relies on the collaborative effort of all parties involved in the project.During the design phase,owners,end users,and their representatives are expected to make the most critical design and budgetary decisions-shaping the essential traits of the project,hence emerge the need and necessity to create and integrate mechanisms to support the decision-making process.Design decisions should not be based on assumptions,past experiences,or imagination.An example of the numerous problems that are a result of uninformed design decisions is“change orders”,known as the deviation from the original scope of work,which leads to an increase of the overall cost,and changes to the construction schedule of the project.The long-term aim of this inquiry is to understand the user’s behavior,and establish evidence-based control measures,which are actions and processes that can be implemented in practice to decrease the volume and frequency of the occurrence of change orders.The current study developed a foundation for further examination by proposing potential control measures,and testing their efficiency,such as integrating Virtual Reality(VR).The specific aim was to examine the effect of different visualization methods(i.e.,VR vs.construction drawings)on,(1)how well the subjects understand the information presented about the future/planned environment;(2)the subjects’perceived confidence in what the future environment will look like;(3)the likelihood of changing the built environment;(4)design review time;and(5)accuracy in reviewing and understanding the design.展开更多
Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper...Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.展开更多
In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n...In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.展开更多
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support ...The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method.展开更多
Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors ...Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform.展开更多
BACKGROUND Several studies have reported that the walking trail making test(WTMT)completion time is significantly higher in patients with developmental coordination disorders and mild cognitive impairments.We hypothes...BACKGROUND Several studies have reported that the walking trail making test(WTMT)completion time is significantly higher in patients with developmental coordination disorders and mild cognitive impairments.We hypothesized that WTMT performance would be altered in older adults with white matter hyperintensities(WMH).AIM To explore the performance in the WTMT in older people with WMH.METHODS In this single-center,observational study,25 elderly WMH patients admitted to our hospital from June 2019 to June 2020 served as the WMH group and 20 participants matched for age,gender,and educational level who were undergoing physical examination in our hospital during the same period served as the control group.The participants completed the WTMT-A and WTMT-B to obtain their gait parameters,including WTMT-A completion time,WTMT-B completion time,speed,step length,cadence,and stance phase percent.White matter lesions were scored according to the Fazekas scale.Multiple neuropsychological assessments were carried out to assess cognitive function.The relationships between WTMT performance and cognition and motion in elderly patients with WMH were analyzed by partial Pearson correlation analysis.RESULTS Patients with WMH performed significantly worse on the choice reaction test(CRT)(0.51±0.09 s vs 0.44±0.06 s,P=0.007),verbal fluency test(VFT,14.2±2.75 vs 16.65±3.54,P=0.012),and digit symbol substitution test(16.00±2.75 vs 18.40±3.27,P=0.010)than participants in the control group.The WMH group also required significantly more time to complete the WTMT-A(93.00±10.76 s vs 70.55±11.28 s,P<0.001)and WTMT-B(109.72±12.26 s vs 82.85±7.90 s,P<0.001).WTMT-A completion time was positively correlated with CRT time(r=0.460,P=0.001),while WTMT-B completion time was negatively correlated with VFT(r=-0.391,P=0.008).On the WTMT-A,only speed was found to statistically differ between the WMH and control groups(0.803±0.096 vs 0.975±0.050 m/s,P<0.001),whereas on the WTMT-B,the WMH group exhibited a significantly lower speed(0.778±0.111 vs 0.970±0.053 m/s,P<0.001)and cadence(82.600±4.140 vs 85.500±5.020 steps/m,P=0.039),as well as a higher stance phase percentage(65.061±1.813%vs 63.513±2.465%,P=0.019)relative to controls.CONCLUSION Older adults with WMH showed obviously poorer WTMT performance.WTMT could be a potential indicator for cognitive and motor deficits in patients with WMH.展开更多
Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper...Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper treatment all contribute to decision-making errors.Clinician-related factors such as fatigue,cognitive overload,and inexperience further interfere with effective decision-making.Cognitive science has provided insight into the clinical decision-making process that can be used to reduce error.This evidence-based review discusses ten common misconceptions regarding critical care decision-making.By understanding how practitioners make clinical decisions and examining how errors occur,strategies may be developed and implemented to decrease errors in Decision-making and improve patient outcomes.展开更多
一、教材分析,本课内容选自《义务教育教科书英语(PEP)》三年级上册Unit 1 Making friends。本单元以问题“How do we make friends?”为线索,围绕Part A中的子问题“How do we greet friends?”和Part B中的子问题“How can we be a go...一、教材分析,本课内容选自《义务教育教科书英语(PEP)》三年级上册Unit 1 Making friends。本单元以问题“How do we make friends?”为线索,围绕Part A中的子问题“How do we greet friends?”和Part B中的子问题“How can we be a good friend?”展开。本课为该单元的第6课时,是一节读写启蒙课。教学内容主要为Part B Start to read,包含一张与交友有关的海报。展开更多
一、教材分析,本课教学内容选自《义务教育教科书英语(PEP)》三年级上册Unit 1 Making friends。本单元以“How do we make friends?”为线索,围绕Part A中的子问题“How do we greet friends?”和Part B中的子问题“How can we be a go...一、教材分析,本课教学内容选自《义务教育教科书英语(PEP)》三年级上册Unit 1 Making friends。本单元以“How do we make friends?”为线索,围绕Part A中的子问题“How do we greet friends?”和Part B中的子问题“How can we be a good friend?”展开。本课是一节对话课,是本单元的第1课时,教学内容主要是Mike和Wu Binbin互相认识时的对话。展开更多
Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of...Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.展开更多
Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcin...Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.展开更多
The actual circumstances of daily life are crucial for the purchasing and pricing strategies of supermarkets.Developing strategies based on these circumstances can assist businesses in ensuring profits and fostering w...The actual circumstances of daily life are crucial for the purchasing and pricing strategies of supermarkets.Developing strategies based on these circumstances can assist businesses in ensuring profits and fostering win-win cooperation.This paper explores methods to maximize profit through purchasing and sales strategies.Initially,the relevant data for various categories of vegetables is integrated.Through histograms,their sales patterns are directly understood,highlighting the most popular vegetables.Upon analyzing each vegetable category,it becomes evident that their sales data do not conform to normal distributions.Therefore,Spearman correlation coefficients are calculated,revealing strong correlations between certain categories,such as aquatic roots and edible fungi.A line chart depicting the top ten selling vegetables indicates a noticeable periodicity.Traditional fitting methods struggle to adequately model the sales of each vegetable category and their relationship with cost-plus pricing.To address this,additional factors such as holidays,weeks,and months are incorporated using techniques like random forest regression.This approach yields cost-plus pricing dependence curves that better capture the relationship,while effectively managing noise.Regarding sales volume prediction,the original data displays significant volatility,necessitating the handling of outliers using the threshold method.For missing data,linear interpolation is employed to mitigate the impact of continuous missing values on prediction accuracy.Subsequently,Adam-optimized long short-term memory(LSTM)networks are utilized to forecast incoming quantities for the next seven days.By extrapolating from normal sales volume,market capacity is estimated,allowing for additional sales through discount strategies.This framework has the potential to increase original income by 1.1 times.展开更多
To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algor...To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algorithm aggregates the results of multiple methods with different principles which are used to obtain constantly changing quality of service, thus increasing the confidence to select the most appropriate web service for a special task. The experimental results indicate that the proposed approach has better scalability and can be applied to large-scale distributed service computing environments. It is also shown that the proposed group decision making approach can effectively optimize the services selection and outperforms the random and robin policies. By using this approach, it can extend a method to obtain constantly changing quality of service and construct a synthetic information entity with multi-level knowledge, which guarantees the accuracy of services selection.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
Group decision making problems are investigated with uncertain multiplicative linguistic preference relations.An unbalanced multiplicative linguistic label set is introduced,which can be used by the experts to express...Group decision making problems are investigated with uncertain multiplicative linguistic preference relations.An unbalanced multiplicative linguistic label set is introduced,which can be used by the experts to express their linguistic preference information over alternatives.The uncertain linguistic weighted geometric mean operator is utilized to aggregate all the individual uncertain multiplicative linguistic preference relations into a collective one,and then a simple approach is developed to determine the experts' weights by utilizing the consensus degrees among the individual uncertain multiplicative linguistic preference relations and the collective uncertain multiplicative linguistic preference relations.Furthermore,a practical interactive procedure for group decision making is proposed based on uncertain multiplicative linguistic preference relations,in which a possibility degree formula and a complementary matrix are used to rank the given alternatives.Finally,the proposed procedure is applied to solve the group decision making problem of a manufacturing company searching the best global supplier for one of its most critical parts used in assembling process.展开更多
文摘THE girls in my college were fond of forming cliques,I admit,I was one of them.We dined together,studied together,and if we fell out,factions broke off until we got over whatever grudge we were holding and the gang could reform.In Dorm 315,there were two groups among the six girls:one included five girls,Wu Shasha,Tan Fang,Zeng Li,Liu Siqi and me;the other,had only one member,Lu Xiaolu.We had to admit that
文摘DURING Hillary Clinton's recent seven- nation visit to Africa, the fiery U.S. Secretary of State did not fail to delight Western media by throwing an expected barb in Chinas direction.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
文摘Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos.71771156,71971145,72171158).
文摘Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooperative behavior management assumed that the maximumdegree of cooperation of experts is to totally accept the revisions suggested by the moderator,which restricted individuals with altruistic behaviors to make more contributions in the agreement-reaching process.In addition,when grouping a large group into subgroups by clustering methods,existing studies were based on the similarity of evaluation values or trust relationships among experts separately but did not consider them simultaneously.In this study,we introduce a clustering method considering the similarity of evaluation values and the trust relations of experts and then develop a consensusmodel taking into account the altruistic behaviors of experts.First,we cluster experts into subgroups by a constrained Kmeans clustering algorithm according to the opinion similarity and trust relationship of experts.Then,we calculate the weights of experts and clusters based on the centrality degrees of experts.Next,to enhance the quality of consensus reaching,we identify three kinds of non-cooperative behaviors and propose corresponding feedback mechanisms relying on the altruistic behaviors of experts.A numerical example is given to show the effectiveness and practicality of the proposed method in emergency decision-making.The study finds that integrating altruistic behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of decision-making information.
文摘The design process of the built environment relies on the collaborative effort of all parties involved in the project.During the design phase,owners,end users,and their representatives are expected to make the most critical design and budgetary decisions-shaping the essential traits of the project,hence emerge the need and necessity to create and integrate mechanisms to support the decision-making process.Design decisions should not be based on assumptions,past experiences,or imagination.An example of the numerous problems that are a result of uninformed design decisions is“change orders”,known as the deviation from the original scope of work,which leads to an increase of the overall cost,and changes to the construction schedule of the project.The long-term aim of this inquiry is to understand the user’s behavior,and establish evidence-based control measures,which are actions and processes that can be implemented in practice to decrease the volume and frequency of the occurrence of change orders.The current study developed a foundation for further examination by proposing potential control measures,and testing their efficiency,such as integrating Virtual Reality(VR).The specific aim was to examine the effect of different visualization methods(i.e.,VR vs.construction drawings)on,(1)how well the subjects understand the information presented about the future/planned environment;(2)the subjects’perceived confidence in what the future environment will look like;(3)the likelihood of changing the built environment;(4)design review time;and(5)accuracy in reviewing and understanding the design.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ50047,2023JJ40306)the Research Foundation of Education Bureau of Hunan Province(23A0494,20B260)the Key R&D Projects of Hunan Province(2019SK2331)。
文摘Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0012724)The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.
文摘The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method.
基金National Natural Science Foundation of China,Grant/Award Numbers:62276285,62236011Major Project of National Social Sciences Foundation of China,Grant/Award Number:20&ZD279。
文摘Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform.
基金Supported by The Wu Jieping Medical Foundation,No.320.6750.18456.
文摘BACKGROUND Several studies have reported that the walking trail making test(WTMT)completion time is significantly higher in patients with developmental coordination disorders and mild cognitive impairments.We hypothesized that WTMT performance would be altered in older adults with white matter hyperintensities(WMH).AIM To explore the performance in the WTMT in older people with WMH.METHODS In this single-center,observational study,25 elderly WMH patients admitted to our hospital from June 2019 to June 2020 served as the WMH group and 20 participants matched for age,gender,and educational level who were undergoing physical examination in our hospital during the same period served as the control group.The participants completed the WTMT-A and WTMT-B to obtain their gait parameters,including WTMT-A completion time,WTMT-B completion time,speed,step length,cadence,and stance phase percent.White matter lesions were scored according to the Fazekas scale.Multiple neuropsychological assessments were carried out to assess cognitive function.The relationships between WTMT performance and cognition and motion in elderly patients with WMH were analyzed by partial Pearson correlation analysis.RESULTS Patients with WMH performed significantly worse on the choice reaction test(CRT)(0.51±0.09 s vs 0.44±0.06 s,P=0.007),verbal fluency test(VFT,14.2±2.75 vs 16.65±3.54,P=0.012),and digit symbol substitution test(16.00±2.75 vs 18.40±3.27,P=0.010)than participants in the control group.The WMH group also required significantly more time to complete the WTMT-A(93.00±10.76 s vs 70.55±11.28 s,P<0.001)and WTMT-B(109.72±12.26 s vs 82.85±7.90 s,P<0.001).WTMT-A completion time was positively correlated with CRT time(r=0.460,P=0.001),while WTMT-B completion time was negatively correlated with VFT(r=-0.391,P=0.008).On the WTMT-A,only speed was found to statistically differ between the WMH and control groups(0.803±0.096 vs 0.975±0.050 m/s,P<0.001),whereas on the WTMT-B,the WMH group exhibited a significantly lower speed(0.778±0.111 vs 0.970±0.053 m/s,P<0.001)and cadence(82.600±4.140 vs 85.500±5.020 steps/m,P=0.039),as well as a higher stance phase percentage(65.061±1.813%vs 63.513±2.465%,P=0.019)relative to controls.CONCLUSION Older adults with WMH showed obviously poorer WTMT performance.WTMT could be a potential indicator for cognitive and motor deficits in patients with WMH.
文摘Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper treatment all contribute to decision-making errors.Clinician-related factors such as fatigue,cognitive overload,and inexperience further interfere with effective decision-making.Cognitive science has provided insight into the clinical decision-making process that can be used to reduce error.This evidence-based review discusses ten common misconceptions regarding critical care decision-making.By understanding how practitioners make clinical decisions and examining how errors occur,strategies may be developed and implemented to decrease errors in Decision-making and improve patient outcomes.
文摘一、教材分析,本课内容选自《义务教育教科书英语(PEP)》三年级上册Unit 1 Making friends。本单元以问题“How do we make friends?”为线索,围绕Part A中的子问题“How do we greet friends?”和Part B中的子问题“How can we be a good friend?”展开。本课为该单元的第6课时,是一节读写启蒙课。教学内容主要为Part B Start to read,包含一张与交友有关的海报。
文摘一、教材分析,本课教学内容选自《义务教育教科书英语(PEP)》三年级上册Unit 1 Making friends。本单元以“How do we make friends?”为线索,围绕Part A中的子问题“How do we greet friends?”和Part B中的子问题“How can we be a good friend?”展开。本课是一节对话课,是本单元的第1课时,教学内容主要是Mike和Wu Binbin互相认识时的对话。
文摘Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.
文摘Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.
文摘The actual circumstances of daily life are crucial for the purchasing and pricing strategies of supermarkets.Developing strategies based on these circumstances can assist businesses in ensuring profits and fostering win-win cooperation.This paper explores methods to maximize profit through purchasing and sales strategies.Initially,the relevant data for various categories of vegetables is integrated.Through histograms,their sales patterns are directly understood,highlighting the most popular vegetables.Upon analyzing each vegetable category,it becomes evident that their sales data do not conform to normal distributions.Therefore,Spearman correlation coefficients are calculated,revealing strong correlations between certain categories,such as aquatic roots and edible fungi.A line chart depicting the top ten selling vegetables indicates a noticeable periodicity.Traditional fitting methods struggle to adequately model the sales of each vegetable category and their relationship with cost-plus pricing.To address this,additional factors such as holidays,weeks,and months are incorporated using techniques like random forest regression.This approach yields cost-plus pricing dependence curves that better capture the relationship,while effectively managing noise.Regarding sales volume prediction,the original data displays significant volatility,necessitating the handling of outliers using the threshold method.For missing data,linear interpolation is employed to mitigate the impact of continuous missing values on prediction accuracy.Subsequently,Adam-optimized long short-term memory(LSTM)networks are utilized to forecast incoming quantities for the next seven days.By extrapolating from normal sales volume,market capacity is estimated,allowing for additional sales through discount strategies.This framework has the potential to increase original income by 1.1 times.
文摘To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algorithm aggregates the results of multiple methods with different principles which are used to obtain constantly changing quality of service, thus increasing the confidence to select the most appropriate web service for a special task. The experimental results indicate that the proposed approach has better scalability and can be applied to large-scale distributed service computing environments. It is also shown that the proposed group decision making approach can effectively optimize the services selection and outperforms the random and robin policies. By using this approach, it can extend a method to obtain constantly changing quality of service and construct a synthetic information entity with multi-level knowledge, which guarantees the accuracy of services selection.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金supported by the National Natural Science Foundation of China (70571087)the National Science Fund for Distinguished Young Scholars of China (70625005)
文摘Group decision making problems are investigated with uncertain multiplicative linguistic preference relations.An unbalanced multiplicative linguistic label set is introduced,which can be used by the experts to express their linguistic preference information over alternatives.The uncertain linguistic weighted geometric mean operator is utilized to aggregate all the individual uncertain multiplicative linguistic preference relations into a collective one,and then a simple approach is developed to determine the experts' weights by utilizing the consensus degrees among the individual uncertain multiplicative linguistic preference relations and the collective uncertain multiplicative linguistic preference relations.Furthermore,a practical interactive procedure for group decision making is proposed based on uncertain multiplicative linguistic preference relations,in which a possibility degree formula and a complementary matrix are used to rank the given alternatives.Finally,the proposed procedure is applied to solve the group decision making problem of a manufacturing company searching the best global supplier for one of its most critical parts used in assembling process.