Nuclear factor Y (NF-Y) is a highly conserved transcription factor presented in all eukaryotic organisms, and is a heterotrimer consisting of three subunits: NF-YA, NF-YB, and NF-YC. In Arabidopsis, these three sub...Nuclear factor Y (NF-Y) is a highly conserved transcription factor presented in all eukaryotic organisms, and is a heterotrimer consisting of three subunits: NF-YA, NF-YB, and NF-YC. In Arabidopsis, these three subunits are encoded by multigene families. The best-studied member of the NF-Y transcription factors is LEAFY COTYLEDON1 (LEC1), a NF-YB family member, which plays a critical role in embryogenesis and seed maturation. However, the function of most NF-Y genes remains elusive. Here, we report the characterization of four genes in the NF-YA family. We found that a gain- of-function mutant of NF-YA1 showed defects in male gametogenesis and embryogenesis. Consistently, overexpression of NF-YA1, 5, 6, and 9 affects male gametogenesis, embryogenesis, seed morphology, and seed germination, with a stronger phenotype when overexpressing NF-YA1 and NF-YA9. Moreover, overexpression of these NF-YA genes also causes hypersensitivity to abscisic acid (ABA) during seed germination, retarded seedling growth, and late flowering at different degrees. Intriguingly, overexpression of NF-YA1, 5, 6, and 9 is sufficient to induce the formation of somatic embryos from the vegetative tissues. However, single or double mutants of these NF-YA genes do not have detectable phenotype. Collectively, these results provide evidence that NF-YA1, 5, 6, and 9 play redundant roles in male gameto- phyte development, embryogenesis, seed development, and post-germinative growth.展开更多
Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes. In higher plants, protein ubiquitination plays an essential role in many biological processes, including hormone signaling, photom...Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes. In higher plants, protein ubiquitination plays an essential role in many biological processes, including hormone signaling, photomorphogenesis, and pathogen defense. However, the roles of protein ubiquitination in the repro- ductive process are not clear. In this study, we identified four plant-specific RING-finger genes designated Aberrant_Pollen Development 1_ (APD1) to APD4, as regulators of pollen mitosis II (PMII) in Arabidopsis thaliana (L.). The apdl apd2 double mutant showed a significantly increased percentage of bicellular-like pollen at the mature pollen stage. Further downregulation of the APD3 and APD4 transcripts in apdl apd2 by RNA interference (RNAi) resulted in more severe abnormal bicellular-like pollen phenotypes than in apdl apd2, suggesting that cell division was defective in male gametogenesis. All of the four genes were expressed in multiple stages at different levels during male gametophyte development. Confocal analysis using green florescence fusion proteins (GFP) GFP-APD1 and GFP-APD2 showed that APDs are associated with intracellular membranes. Furthermore, APD2 had E2-dependent E3 ligase activity in vitro, and five APD2-interacting proteins were identified. Our results suggest that these four genes may be involved, redundantly, in regulating the PMII process during male gametogenesis.展开更多
基金This work was supported by grants from the National Natural Science Foundation of China (31071449), the Ministry of Science and Technology of China (2009CB941502), and the National Transgenic Research Project (2009ZX08009-115B).
文摘Nuclear factor Y (NF-Y) is a highly conserved transcription factor presented in all eukaryotic organisms, and is a heterotrimer consisting of three subunits: NF-YA, NF-YB, and NF-YC. In Arabidopsis, these three subunits are encoded by multigene families. The best-studied member of the NF-Y transcription factors is LEAFY COTYLEDON1 (LEC1), a NF-YB family member, which plays a critical role in embryogenesis and seed maturation. However, the function of most NF-Y genes remains elusive. Here, we report the characterization of four genes in the NF-YA family. We found that a gain- of-function mutant of NF-YA1 showed defects in male gametogenesis and embryogenesis. Consistently, overexpression of NF-YA1, 5, 6, and 9 affects male gametogenesis, embryogenesis, seed morphology, and seed germination, with a stronger phenotype when overexpressing NF-YA1 and NF-YA9. Moreover, overexpression of these NF-YA genes also causes hypersensitivity to abscisic acid (ABA) during seed germination, retarded seedling growth, and late flowering at different degrees. Intriguingly, overexpression of NF-YA1, 5, 6, and 9 is sufficient to induce the formation of somatic embryos from the vegetative tissues. However, single or double mutants of these NF-YA genes do not have detectable phenotype. Collectively, these results provide evidence that NF-YA1, 5, 6, and 9 play redundant roles in male gameto- phyte development, embryogenesis, seed development, and post-germinative growth.
基金supported by the National Key Basic Research Program of the People's Republic of China(2011CB915402)the National Science Foundation of China(30970270to JJL)
文摘Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes. In higher plants, protein ubiquitination plays an essential role in many biological processes, including hormone signaling, photomorphogenesis, and pathogen defense. However, the roles of protein ubiquitination in the repro- ductive process are not clear. In this study, we identified four plant-specific RING-finger genes designated Aberrant_Pollen Development 1_ (APD1) to APD4, as regulators of pollen mitosis II (PMII) in Arabidopsis thaliana (L.). The apdl apd2 double mutant showed a significantly increased percentage of bicellular-like pollen at the mature pollen stage. Further downregulation of the APD3 and APD4 transcripts in apdl apd2 by RNA interference (RNAi) resulted in more severe abnormal bicellular-like pollen phenotypes than in apdl apd2, suggesting that cell division was defective in male gametogenesis. All of the four genes were expressed in multiple stages at different levels during male gametophyte development. Confocal analysis using green florescence fusion proteins (GFP) GFP-APD1 and GFP-APD2 showed that APDs are associated with intracellular membranes. Furthermore, APD2 had E2-dependent E3 ligase activity in vitro, and five APD2-interacting proteins were identified. Our results suggest that these four genes may be involved, redundantly, in regulating the PMII process during male gametogenesis.