The study objectives were to investigate the relationship between early exposure to genistein and obesity in young adulthood and to evaluate changes in reproductive health during puberty and adulthood following in ute...The study objectives were to investigate the relationship between early exposure to genistein and obesity in young adulthood and to evaluate changes in reproductive health during puberty and adulthood following in utero exposure to genistein.展开更多
BACKGROUND The effects of inappropriate dietary calcium intake in early life on later obesity have not been fully elucidated.AIM To raise the mechanism of maternal calcium intake on the multi-differentiation potential...BACKGROUND The effects of inappropriate dietary calcium intake in early life on later obesity have not been fully elucidated.AIM To raise the mechanism of maternal calcium intake on the multi-differentiation potential of mesenchymal stem cells among their male offspring.METHODS Four-week-old female C57BL/6N mice were fed by deficient,low,normal and excessive calcium reproductive diets throughout pregnancy and lactation.Bone MSCs(BMSCs)were obtained from 7-day-old male offspring to measure the adipogenic differentiation potential by the Wnt/β-catenin signaling pathway.The other weaning male pups were fed a high-fat diet for 16 wk,along with normalfat diet as the control.Then the serum was collected for the measurement of biochemical indicators.Meanwhile,the adipose tissues were excised to analyze the adipocyte sizes and inflammatory infiltration.And the target gene expressions on the adipogenic differentiation and Wnt/β-catenin signaling pathway in the adipose tissues and BMSCs were determined by real-time reverse transcription polymerase chain reaction.RESULTS Compared with the control group,maternal deficient,low and excessive calcium intake during pregnancy and lactation aggravated dietary-induced obesity,with larger adipocytes,more serious inflammatory infiltration and higher serum metabolism indicators by interfering with higher expressions of adipogenic differentiation(PPARγ,C/EBPα,Fabp4,LPL,Adiponectin,Resistin and/or Leptin)among their male offspring(P<0.05).And there were significantly different expression of similar specific genes in the BMSCs to successfully polarize adipogenic differentiation and suppress osteogenic differentiation in vivo and in vitro,respectively(P<0.05).Meanwhile,it was accompanied by more significant disorders on the expressions of Wnt/β-catenin signaling pathway both in BMSCs and adulthood adipose tissues among the offspring from maternal inappropriate dietary calcium intake groups.CONCLUSION Early-life abnormal dietary calcium intake might program the adipogenic differentiation potential of BMSCs from male offspring,with significant expressions on the Wnt/β-catenin signaling pathway to aggravate high-fat-diet-induced obesity in adulthood.展开更多
The prevalence of obesity and type 2 diabetes mellitus(T2DM)has been increasing throughout the world over the past 20 years.Environmental chemicals known to regulate the endocrine system have been considered as a ri...The prevalence of obesity and type 2 diabetes mellitus(T2DM)has been increasing throughout the world over the past 20 years.Environmental chemicals known to regulate the endocrine system have been considered as a risk factor for the development of metabolic diseases.Several people are exposed to environmental chemicals during their lives.展开更多
基金supported by Natural Science Foundation of China(81202190)Bureau of Health Foundation,Heilongjiang Province(2012-768)the Innovative Foundation of the Harbin Medical University in China(HCXS2008006)
文摘The study objectives were to investigate the relationship between early exposure to genistein and obesity in young adulthood and to evaluate changes in reproductive health during puberty and adulthood following in utero exposure to genistein.
基金Supported by National Natural Science Foundation of China(to P.L.),No.81602859 and No.82173524National Key Research and Development Program of China(to Y.Z.),No.2016YFC1000305.
文摘BACKGROUND The effects of inappropriate dietary calcium intake in early life on later obesity have not been fully elucidated.AIM To raise the mechanism of maternal calcium intake on the multi-differentiation potential of mesenchymal stem cells among their male offspring.METHODS Four-week-old female C57BL/6N mice were fed by deficient,low,normal and excessive calcium reproductive diets throughout pregnancy and lactation.Bone MSCs(BMSCs)were obtained from 7-day-old male offspring to measure the adipogenic differentiation potential by the Wnt/β-catenin signaling pathway.The other weaning male pups were fed a high-fat diet for 16 wk,along with normalfat diet as the control.Then the serum was collected for the measurement of biochemical indicators.Meanwhile,the adipose tissues were excised to analyze the adipocyte sizes and inflammatory infiltration.And the target gene expressions on the adipogenic differentiation and Wnt/β-catenin signaling pathway in the adipose tissues and BMSCs were determined by real-time reverse transcription polymerase chain reaction.RESULTS Compared with the control group,maternal deficient,low and excessive calcium intake during pregnancy and lactation aggravated dietary-induced obesity,with larger adipocytes,more serious inflammatory infiltration and higher serum metabolism indicators by interfering with higher expressions of adipogenic differentiation(PPARγ,C/EBPα,Fabp4,LPL,Adiponectin,Resistin and/or Leptin)among their male offspring(P<0.05).And there were significantly different expression of similar specific genes in the BMSCs to successfully polarize adipogenic differentiation and suppress osteogenic differentiation in vivo and in vitro,respectively(P<0.05).Meanwhile,it was accompanied by more significant disorders on the expressions of Wnt/β-catenin signaling pathway both in BMSCs and adulthood adipose tissues among the offspring from maternal inappropriate dietary calcium intake groups.CONCLUSION Early-life abnormal dietary calcium intake might program the adipogenic differentiation potential of BMSCs from male offspring,with significant expressions on the Wnt/β-catenin signaling pathway to aggravate high-fat-diet-induced obesity in adulthood.
文摘The prevalence of obesity and type 2 diabetes mellitus(T2DM)has been increasing throughout the world over the past 20 years.Environmental chemicals known to regulate the endocrine system have been considered as a risk factor for the development of metabolic diseases.Several people are exposed to environmental chemicals during their lives.