Ni/Al2O3 catalysts were derived from spinel NiAl2O4 with different Ni content ((2.5, 5 and 7.5) wt%). The catalysts were obtained by H-2 reduction and were investigated for the low-temperature hydrogenation of maleic ...Ni/Al2O3 catalysts were derived from spinel NiAl2O4 with different Ni content ((2.5, 5 and 7.5) wt%). The catalysts were obtained by H-2 reduction and were investigated for the low-temperature hydrogenation of maleic anhydride (MA) to produce succinic anhydride (SA). The characterization results showed that Ni-0 active sites were mainly derived during the H2 reduction from spinel NiAl2O4 Among the catalysts studied, employing the optimum preparation and reaction conditions with Ni(5%)/Al2O3 yielded the highest catalytic performance. A near-100% conversion of MA and similar to 90% selectivity to SA were achieved at 120 degrees C and 0.5 MPa of H-2 with a weighted hourly space velocity (MA) of 2 h(-1). (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive...A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA.展开更多
Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.Howe...Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.However,starch usually suffers from severe foaming and low carbon yield during direct pyrolysis.Herein,we report a simple and eco-friendly dry strategy,by maleic anhydride initiating the esterification of starch,to design carbon microspheres against the starch foaming.Moreover,the infuence of ester grafting on the pyrolytic behavior of starch is also focused.The formation of ester groups in precursor guarantees the structural stability of starch-based intermediate because it can promote the accumulation of unsaturated species and accelerate the water elimination during pyrolysis.Meanwhile,the esterification and dehydration reactions greatly deplete the primary hydroxyl groups in the starch molecules and thus the rapid levoglucosan release is inhibited,which well keeps the spherical morphology of starch and ensures the high carbon yield.In further exploration as anode materials for Lithium-ion batteries,the obtained carbon microspheres exhibit good cyclability and rate performance with a reversible capacity of 444 m Ah g^(-1)at 50 m A g^(-1).This work provides theoretical fundamentals for the controllable thermal transformation of biomass towards wide applications.展开更多
Solid-liquid equilibria (SLE) of three binary systems and seventernary systems containing maleic an- hydride (MA) are measured byvisual method. The experimental data are compared with the calculatedones with modified ...Solid-liquid equilibria (SLE) of three binary systems and seventernary systems containing maleic an- hydride (MA) are measured byvisual method. The experimental data are compared with the calculatedones with modified universal quasichemical functional group activitycoefficient (UNIFAC) method in which the interaction parametersbetween groups come from two sources, dortmund data bank (DDB), ifthere's any, and correlations based on our former presentedexperimental SLE data of twenty binary systems.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature prog...In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The XRD and TPR studies showed that Ni was present as Ni2+ on the support, which indicated that there were no elemental nickel (Ni^0) and Ni203 species in the unreduced samples. Increasing of calcination temperature to 650 ℃ leads to destruction of the support structure observed in TGA, while the catalyst sample calcined at 550 ℃ exhibits better performances than other samples. The ideal conversion of maleic anhydride (97.14%) and selectivity of succinic anhydride (99.55%) were realized at a reaction temperature of 180 ℃ and a weight hourly space velocity of 4 h^-1 under a reaction pressure of 1 MPa.展开更多
The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by cons...The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.展开更多
Aim:To evaluate the safety of the long term vas occlusion with styrene maleic anhydride (SMA) and its non-invasive reversal at the level of accessory reproductive glands (ARGs) in langurs.Methods:The morphology of sem...Aim:To evaluate the safety of the long term vas occlusion with styrene maleic anhydride (SMA) and its non-invasive reversal at the level of accessory reproductive glands (ARGs) in langurs.Methods:The morphology of seminal vesicle and ventral prostate was evaluated by light as well as transmission electron microscopy.Serum clinical chemistry and urine albumin were evaluated in an autoanalyzer using reagent kits.Fructose,acid phosphatase and zinc in the seminal plasma were evaluated spectrophotometrically according to the WHO manual.Serum testosterone, prostate specific antigen and sperm antibodies were evaluated by enzyme-linked immunosorbent assays (ELISA) using reagent kits and hematology was estimated according to standard procedures.Results:The morphological features and secretory activity of the seminal vesicle and prostate were normal as evidenced by the presence of well- developed mitochondria,rough endoplasmic reticulum,Golgi bodies,secretory granules and normal nuclear charac- teristics throughout the course of investigation.Serum testosterone and prostate specific antigen remained unaltered and serum antisperm antibodies level presented negative titres.Urine albumin was nil.Total red blood corpuscles (RBC),white blood corpuscles (WBC),hemoglobin (Hb) and red cell indices,serum protein,glucose,cholesterol, creatinine,creatine kinase (CK),serum glutamate oxalate transaminase (SGOT),serum glutamate pyruvate transami- nase (SGPT),lactate dehydrogenase (LDH),bilirubin,urea,triglycerides and high-density lipoprotein (HDL) did not show appreciable changes following vas occlusion and after its non-invasive reversal.Although fructose,acid phos- phatase (ACP) and zinc in the seminal plasma showed a significant reduction following vas occlusion,it could not be related to the morphology of seminal vesicle and prostate.Conclusion:SMA vas occlusion and its non-invasive reversal do not damage the accessory reproductive organs.展开更多
Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCVMgCl2 supported catalyst. A solution of ben...Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCVMgCl2 supported catalyst. A solution of benzoyl peroxide (BPO)/maleic anhydride (MAH)/xylene (interfacial reagent) or BPO/MAH/St (comonomer) was absorbed onto the PE/PP in- reactor blend granules, and solid phase graft polymerization of MAH on PE/PP was conducted. The amount of grafted MAH on PE/PP was measured through chemical titration. The results showed that solid phase graft polymerization of MAH in PE/PP in-reactor blend granules produced graft copolymer with high amount of grafted MAH, and the amount of grafted MAH was raised slightly when St was introduced as comonomer. The graft in-reactor blend was fractionated into five fractions through temperature-gradient extraction fractionation (TGEF), and the fractions were analyzed by FTIR. The results revealed that MAH is mainly grafted on the PE segments, whereas MAH was predominantly grafted on the PP segments when St was present in the graft polymerization system. In addition, the final product is still in the form of regular spherical granules, which is beneficial for industrial processing.展开更多
The copolymerization of maleic anhydride and vinyl acetate in tetrahydrofuran was studied. Results show that the maximum copolymerization rate is in 0.6 mole fraction of maleic anhydride, indicating the involvement of...The copolymerization of maleic anhydride and vinyl acetate in tetrahydrofuran was studied. Results show that the maximum copolymerization rate is in 0.6 mole fraction of maleic anhydride, indicating the involvement of maleic anhydride-tetrahydrofuran charge transfer complex in the chain initiation process. ESR study provides collateral evidence for the formation of maleic anhydride radical and tetrahydrofuran radical.展开更多
Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV ag...Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV aging box, and its properties were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), X-ray diffraction(XRD), thermo gravimetric analysis(TGA) and mechanical testing machine. FT-IR and SEM results show that the infrared absorption peak intensities of C-O, C-H, and C=O in aged samples decrease gradually with increasing aging time. The damage degree of surface and internal of aged samples increases gradually. XRD analysis results show that after aging treatment, the crystalline diffraction peak of thermoplastic esterified starch at 2θ = 21° disappears and the diffraction peaks of PLA at 2θ = 16.5° appear, indicating that the hydrolysis rate of esterified starch is greater than that of PLA. The crystallinity of PLA in aged sample shows an increasing trend at first followed by a decreasing one along with the increasing time of aging treatment, suggesting that the hydrolysis of amorphous regions of PLA is more preferential than its crystalline regions. Because of the influence of crystal structure and the change of composition structure, the initial decomposition temperature of aging test specimen gradually increases with the extension of aging time. The maximum decomposition rate temperature and residual mass increases at first, and then decrease after the aging time extending to 1600 h. As the aging time increases, the damage degree of combination interface between esterification starch and PLA is exacerbated, resulting in the tensile strength and bending strength of aged specimen decreasing gradually.展开更多
The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrare...The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrared spectroscopy(FTIR),the X-ray diffraction(XRD),the scanning electron microscopy(SEM),the transmission electron microscopy(TEM),and the N_(2)adsorption technique.The selective hydrogenation of maleic anhydride(MA)to succinic anhydride(SA)over the Ni/CMS catalysts was investigated.The results indicated that the Ni/CMS catalyst,which was prepared with glucose as carbon source and calcined at 500℃,exhibited the best performance.The hydrogen pressure,reaction temperature,and reaction time could significantly affect the conversion of maleic anhydride during the hydrogenation reaction.A 98.4%conversion of MA and an 100%selectivity to SA were achieved over the Ni/CMS catalyst in acetic anhydride solvent under mild conditions covering a temperature of 90℃,a H2 pressure of 1.0 MPa,and a reaction time of 3 h.展开更多
A decorated ruthenium catalyst was prepared by the coprecipitation method and used for the selective hydrogenation of maleic anhydride(MA) to γ-butyrolactone(GBL). The as-prepared catalyst was characterized by XRD, T...A decorated ruthenium catalyst was prepared by the coprecipitation method and used for the selective hydrogenation of maleic anhydride(MA) to γ-butyrolactone(GBL). The as-prepared catalyst was characterized by XRD, TGDTG and N2 adsorption techniques. The characterization tests revealed that the catalyst carrier was composed of monoclinic zirconia(m-ZrO2) and hydroxyl cobalt oxide(CoO(OH)). The hydrogenation results showed that the content of CoO(OH), the reaction temperature, the hydrogen pressure and the reaction time significantly affected the catalytic selectivity to GBL. The promotional effect of CoO(OH) was remarkable, which led to an obvious increase in GBL selectivity. An 100% MA conversion and 92.0% selectivity to GBL were achieved over the Ru/ZrO2-CoO(OH)(35%) catalyst in water solvent under the conditions involving a reaction temperature of 180 ℃, a hydrogen pressure of 3.0 MPa, and a reaction time of 6 h.展开更多
The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence...The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence was determined as alternating. The copolymerization rates at different feed ratios, temperatures and in different solvents were investigated, giving evidence to the very active involvement of the CT complexes in the copolymerization. Terpolymerization with acrylonitrile also showed that the complex mechanism was a proper one for this system.展开更多
A solid-state mechanochemical processing, that is, pan-milling, was used to conduct the esterification of poly(vinyl alcohol) (PVA) with maleic anhydride (MA) through stress-induced reaction. FTIR spectrum study...A solid-state mechanochemical processing, that is, pan-milling, was used to conduct the esterification of poly(vinyl alcohol) (PVA) with maleic anhydride (MA) through stress-induced reaction. FTIR spectrum study indicated the presence of ester linkages and olefinic double bonds in maleic anhydride cross-linked PVA. Thermal properties of the cross-linked product were characterized by DSC. The results showed its glass transition temperature was 20 ℃ higher than the original linear PVA and the thermal stability was also improved.展开更多
Plasma polymerized maleic anhydride (MA) was carried out by using maleic anhydride supersaturated ethanol solution as a precursor in a dielectric barrier discharge (DBD). The film properties were characterized by ...Plasma polymerized maleic anhydride (MA) was carried out by using maleic anhydride supersaturated ethanol solution as a precursor in a dielectric barrier discharge (DBD). The film properties were characterized by water contact angle (WCA), Fourier transfer infrared (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) analysis, and a thickness profilometer. The influence of the processing parameters on the film properties such as tile power frequency and polymerization zone was investigated. The results show that anhydride group incorporated into the growing films is favorable at the frequency of 80 kHz and working pressure of 50 Pa. The poly (maleic anhydride) film is uniform and compact at an average deposition rate of 8 nm/min.展开更多
By combining the strong and light carbon fibers (CFs) with polymers, composite materials with extraordinary mechanical properties are achieved. However, the mechanical properties of the as-prepared CF-reinforced pol...By combining the strong and light carbon fibers (CFs) with polymers, composite materials with extraordinary mechanical properties are achieved. However, the mechanical properties of the as-prepared CF-reinforced polymer composites can not satisfy the applications in certain fields, especially for the poor interactions between CFs and the polymers. To enhance the mechanical properties of composite materials, a solid phase grafting method has been developed to improve the adhesion forces between CFs and the polymer, by modifying the surfaces of CFs. The effects of the reaction temperature, reaction time, as well as the dosage of the initiator and maleic anhydride (MAH) on the grafting efficiency have been investigated systematically. The structure and the surface chemistry of functionalized CFs have been characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric (TG), and contact angle test. All of these results demonstrate that MAH is grafted onto the surface of CFs successfully by the solid phase grafting method. The MAH grafted CFs significantly improve its wettability, which further improves the interfacial adhesion between CFs and the polymeric matrix. The optimal reaction conditions are determined, such as the MAH/CF molar ratio, the dosage of initiator, the reaction temperature and the reaction time to be 3/1, 2%, 90℃ and 4 h, respectively. These attractive interracial characteristics of modified CFs suggest that the method proposed herein is a novel and efficient approach to develop CF-reinforced polymer composites with outstanding mechanical properties for cutting-edge industrial applications.展开更多
The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene ...The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.展开更多
A novel surface modifying agent and internal compatilizer of inorganic and macromolecule composite materials,P(St/MAH/BA)terpolymer,was synthesized in butanone by solution polymerization method using styrene(St),malei...A novel surface modifying agent and internal compatilizer of inorganic and macromolecule composite materials,P(St/MAH/BA)terpolymer,was synthesized in butanone by solution polymerization method using styrene(St),maleic anhydride(MAH),and butyl acrylate(BA)as monomers and azobisisobutyronitrile(AIBN)as an initiator.Some affecting factors on terpolymers yields such as polymerization time,reaction temperature,solvent volume,initiator content,and reactants ratios were studied.Furthermore,the structure and thermal properties of terpolymers were primarily characterized and determined by Fourier Transform Infrared Spectroscopy(FTIR),nuclear magnetic resonance(NMR),thermogravimetric analysis(TGA),and gel permeation chromatography(GPC).The results indicate that the terpolymers are random polymers and the yields are low,but the thermal decomposed temperature of terpolymers P(St/MAH/BA)is around 220 ℃ and the average molecular weights(Mw)achieve 1.189×105 g·mol-1.展开更多
Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a c...Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.展开更多
基金supported by the National Natural Science Foundation of China(21173050,21371035)SINOPEC(X514005)~~
文摘Ni/Al2O3 catalysts were derived from spinel NiAl2O4 with different Ni content ((2.5, 5 and 7.5) wt%). The catalysts were obtained by H-2 reduction and were investigated for the low-temperature hydrogenation of maleic anhydride (MA) to produce succinic anhydride (SA). The characterization results showed that Ni-0 active sites were mainly derived during the H2 reduction from spinel NiAl2O4 Among the catalysts studied, employing the optimum preparation and reaction conditions with Ni(5%)/Al2O3 yielded the highest catalytic performance. A near-100% conversion of MA and similar to 90% selectivity to SA were achieved at 120 degrees C and 0.5 MPa of H-2 with a weighted hourly space velocity (MA) of 2 h(-1). (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
文摘A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA.
基金supported by the National Science Foundation for Excellent Young Scholars of China(21922815)the Key Research and Development(R&D)Projects of Shanxi Province(201903D121180)the National Key Research and Development(R&D)Program of China。
文摘Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.However,starch usually suffers from severe foaming and low carbon yield during direct pyrolysis.Herein,we report a simple and eco-friendly dry strategy,by maleic anhydride initiating the esterification of starch,to design carbon microspheres against the starch foaming.Moreover,the infuence of ester grafting on the pyrolytic behavior of starch is also focused.The formation of ester groups in precursor guarantees the structural stability of starch-based intermediate because it can promote the accumulation of unsaturated species and accelerate the water elimination during pyrolysis.Meanwhile,the esterification and dehydration reactions greatly deplete the primary hydroxyl groups in the starch molecules and thus the rapid levoglucosan release is inhibited,which well keeps the spherical morphology of starch and ensures the high carbon yield.In further exploration as anode materials for Lithium-ion batteries,the obtained carbon microspheres exhibit good cyclability and rate performance with a reversible capacity of 444 m Ah g^(-1)at 50 m A g^(-1).This work provides theoretical fundamentals for the controllable thermal transformation of biomass towards wide applications.
文摘Solid-liquid equilibria (SLE) of three binary systems and seventernary systems containing maleic an- hydride (MA) are measured byvisual method. The experimental data are compared with the calculatedones with modified universal quasichemical functional group activitycoefficient (UNIFAC) method in which the interaction parametersbetween groups come from two sources, dortmund data bank (DDB), ifthere's any, and correlations based on our former presentedexperimental SLE data of twenty binary systems.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
文摘In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The XRD and TPR studies showed that Ni was present as Ni2+ on the support, which indicated that there were no elemental nickel (Ni^0) and Ni203 species in the unreduced samples. Increasing of calcination temperature to 650 ℃ leads to destruction of the support structure observed in TGA, while the catalyst sample calcined at 550 ℃ exhibits better performances than other samples. The ideal conversion of maleic anhydride (97.14%) and selectivity of succinic anhydride (99.55%) were realized at a reaction temperature of 180 ℃ and a weight hourly space velocity of 4 h^-1 under a reaction pressure of 1 MPa.
文摘The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.
文摘Aim:To evaluate the safety of the long term vas occlusion with styrene maleic anhydride (SMA) and its non-invasive reversal at the level of accessory reproductive glands (ARGs) in langurs.Methods:The morphology of seminal vesicle and ventral prostate was evaluated by light as well as transmission electron microscopy.Serum clinical chemistry and urine albumin were evaluated in an autoanalyzer using reagent kits.Fructose,acid phosphatase and zinc in the seminal plasma were evaluated spectrophotometrically according to the WHO manual.Serum testosterone, prostate specific antigen and sperm antibodies were evaluated by enzyme-linked immunosorbent assays (ELISA) using reagent kits and hematology was estimated according to standard procedures.Results:The morphological features and secretory activity of the seminal vesicle and prostate were normal as evidenced by the presence of well- developed mitochondria,rough endoplasmic reticulum,Golgi bodies,secretory granules and normal nuclear charac- teristics throughout the course of investigation.Serum testosterone and prostate specific antigen remained unaltered and serum antisperm antibodies level presented negative titres.Urine albumin was nil.Total red blood corpuscles (RBC),white blood corpuscles (WBC),hemoglobin (Hb) and red cell indices,serum protein,glucose,cholesterol, creatinine,creatine kinase (CK),serum glutamate oxalate transaminase (SGOT),serum glutamate pyruvate transami- nase (SGPT),lactate dehydrogenase (LDH),bilirubin,urea,triglycerides and high-density lipoprotein (HDL) did not show appreciable changes following vas occlusion and after its non-invasive reversal.Although fructose,acid phos- phatase (ACP) and zinc in the seminal plasma showed a significant reduction following vas occlusion,it could not be related to the morphology of seminal vesicle and prostate.Conclusion:SMA vas occlusion and its non-invasive reversal do not damage the accessory reproductive organs.
基金This work was supported by the Special Fund for Major State Basic Research Projects (Grant no. G1999064803).
文摘Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCVMgCl2 supported catalyst. A solution of benzoyl peroxide (BPO)/maleic anhydride (MAH)/xylene (interfacial reagent) or BPO/MAH/St (comonomer) was absorbed onto the PE/PP in- reactor blend granules, and solid phase graft polymerization of MAH on PE/PP was conducted. The amount of grafted MAH on PE/PP was measured through chemical titration. The results showed that solid phase graft polymerization of MAH in PE/PP in-reactor blend granules produced graft copolymer with high amount of grafted MAH, and the amount of grafted MAH was raised slightly when St was introduced as comonomer. The graft in-reactor blend was fractionated into five fractions through temperature-gradient extraction fractionation (TGEF), and the fractions were analyzed by FTIR. The results revealed that MAH is mainly grafted on the PE segments, whereas MAH was predominantly grafted on the PP segments when St was present in the graft polymerization system. In addition, the final product is still in the form of regular spherical granules, which is beneficial for industrial processing.
基金Projects supported by the National Natural Science Foundation of China
文摘The copolymerization of maleic anhydride and vinyl acetate in tetrahydrofuran was studied. Results show that the maximum copolymerization rate is in 0.6 mole fraction of maleic anhydride, indicating the involvement of maleic anhydride-tetrahydrofuran charge transfer complex in the chain initiation process. ESR study provides collateral evidence for the formation of maleic anhydride radical and tetrahydrofuran radical.
基金Funded by the Key Laboratory of Bio-based Material Science&Technology(Northeast Forestry University)Ministry of Education(SWZCL2016-04)+1 种基金the Scientific Research Project of Hunan Provincial Education Department(15C1428)the State Bureau of Forestry 948 Project(2009-4-51)
文摘Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV aging box, and its properties were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), X-ray diffraction(XRD), thermo gravimetric analysis(TGA) and mechanical testing machine. FT-IR and SEM results show that the infrared absorption peak intensities of C-O, C-H, and C=O in aged samples decrease gradually with increasing aging time. The damage degree of surface and internal of aged samples increases gradually. XRD analysis results show that after aging treatment, the crystalline diffraction peak of thermoplastic esterified starch at 2θ = 21° disappears and the diffraction peaks of PLA at 2θ = 16.5° appear, indicating that the hydrolysis rate of esterified starch is greater than that of PLA. The crystallinity of PLA in aged sample shows an increasing trend at first followed by a decreasing one along with the increasing time of aging treatment, suggesting that the hydrolysis of amorphous regions of PLA is more preferential than its crystalline regions. Because of the influence of crystal structure and the change of composition structure, the initial decomposition temperature of aging test specimen gradually increases with the extension of aging time. The maximum decomposition rate temperature and residual mass increases at first, and then decrease after the aging time extending to 1600 h. As the aging time increases, the damage degree of combination interface between esterification starch and PLA is exacerbated, resulting in the tensile strength and bending strength of aged specimen decreasing gradually.
基金The authors are grateful for the financial supports of the Project of Research and Development Fund of Nanchong City(19YFZJ0107,18YFZJ0041)the Meritocracy Research Funds of China West Normal University(17YC041)the Undergraduate Training Program for Innovation of China West Normal University.(cxcy2020186).
文摘The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrared spectroscopy(FTIR),the X-ray diffraction(XRD),the scanning electron microscopy(SEM),the transmission electron microscopy(TEM),and the N_(2)adsorption technique.The selective hydrogenation of maleic anhydride(MA)to succinic anhydride(SA)over the Ni/CMS catalysts was investigated.The results indicated that the Ni/CMS catalyst,which was prepared with glucose as carbon source and calcined at 500℃,exhibited the best performance.The hydrogen pressure,reaction temperature,and reaction time could significantly affect the conversion of maleic anhydride during the hydrogenation reaction.A 98.4%conversion of MA and an 100%selectivity to SA were achieved over the Ni/CMS catalyst in acetic anhydride solvent under mild conditions covering a temperature of 90℃,a H2 pressure of 1.0 MPa,and a reaction time of 3 h.
基金the financial support from the Natural Science Foundation of China(No.21303139)the Key Fund Project of Educational Department of Sichuan Province(No.14ZA0126)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(No.CSPC2013-1)
文摘A decorated ruthenium catalyst was prepared by the coprecipitation method and used for the selective hydrogenation of maleic anhydride(MA) to γ-butyrolactone(GBL). The as-prepared catalyst was characterized by XRD, TGDTG and N2 adsorption techniques. The characterization tests revealed that the catalyst carrier was composed of monoclinic zirconia(m-ZrO2) and hydroxyl cobalt oxide(CoO(OH)). The hydrogenation results showed that the content of CoO(OH), the reaction temperature, the hydrogen pressure and the reaction time significantly affected the catalytic selectivity to GBL. The promotional effect of CoO(OH) was remarkable, which led to an obvious increase in GBL selectivity. An 100% MA conversion and 92.0% selectivity to GBL were achieved over the Ru/ZrO2-CoO(OH)(35%) catalyst in water solvent under the conditions involving a reaction temperature of 180 ℃, a hydrogen pressure of 3.0 MPa, and a reaction time of 6 h.
基金Projects supported by the Science Fund of the Chinese Academy of Sciences
文摘The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence was determined as alternating. The copolymerization rates at different feed ratios, temperatures and in different solvents were investigated, giving evidence to the very active involvement of the CT complexes in the copolymerization. Terpolymerization with acrylonitrile also showed that the complex mechanism was a proper one for this system.
基金supported by the National Natural Science Foundation of China(No.10476014).
文摘A solid-state mechanochemical processing, that is, pan-milling, was used to conduct the esterification of poly(vinyl alcohol) (PVA) with maleic anhydride (MA) through stress-induced reaction. FTIR spectrum study indicated the presence of ester linkages and olefinic double bonds in maleic anhydride cross-linked PVA. Thermal properties of the cross-linked product were characterized by DSC. The results showed its glass transition temperature was 20 ℃ higher than the original linear PVA and the thermal stability was also improved.
基金National Natural Science Foundation of China(No.10475010)
文摘Plasma polymerized maleic anhydride (MA) was carried out by using maleic anhydride supersaturated ethanol solution as a precursor in a dielectric barrier discharge (DBD). The film properties were characterized by water contact angle (WCA), Fourier transfer infrared (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) analysis, and a thickness profilometer. The influence of the processing parameters on the film properties such as tile power frequency and polymerization zone was investigated. The results show that anhydride group incorporated into the growing films is favorable at the frequency of 80 kHz and working pressure of 50 Pa. The poly (maleic anhydride) film is uniform and compact at an average deposition rate of 8 nm/min.
基金Supported by the Science and Technology Plan Projects of Fujian Province(No.2012H6008)
文摘By combining the strong and light carbon fibers (CFs) with polymers, composite materials with extraordinary mechanical properties are achieved. However, the mechanical properties of the as-prepared CF-reinforced polymer composites can not satisfy the applications in certain fields, especially for the poor interactions between CFs and the polymers. To enhance the mechanical properties of composite materials, a solid phase grafting method has been developed to improve the adhesion forces between CFs and the polymer, by modifying the surfaces of CFs. The effects of the reaction temperature, reaction time, as well as the dosage of the initiator and maleic anhydride (MAH) on the grafting efficiency have been investigated systematically. The structure and the surface chemistry of functionalized CFs have been characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric (TG), and contact angle test. All of these results demonstrate that MAH is grafted onto the surface of CFs successfully by the solid phase grafting method. The MAH grafted CFs significantly improve its wettability, which further improves the interfacial adhesion between CFs and the polymeric matrix. The optimal reaction conditions are determined, such as the MAH/CF molar ratio, the dosage of initiator, the reaction temperature and the reaction time to be 3/1, 2%, 90℃ and 4 h, respectively. These attractive interracial characteristics of modified CFs suggest that the method proposed herein is a novel and efficient approach to develop CF-reinforced polymer composites with outstanding mechanical properties for cutting-edge industrial applications.
基金Project Supported by the National Natural Science Foundation of China.
文摘The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.
基金Nano Project Foundation of Shanghai Technology Committee,China(No.0652nm039)Shanghai Leading Academic Discipline Project,China(No.B502)Shanghai Key Laboratory Proejct,China(No.08DZ2230500)
文摘A novel surface modifying agent and internal compatilizer of inorganic and macromolecule composite materials,P(St/MAH/BA)terpolymer,was synthesized in butanone by solution polymerization method using styrene(St),maleic anhydride(MAH),and butyl acrylate(BA)as monomers and azobisisobutyronitrile(AIBN)as an initiator.Some affecting factors on terpolymers yields such as polymerization time,reaction temperature,solvent volume,initiator content,and reactants ratios were studied.Furthermore,the structure and thermal properties of terpolymers were primarily characterized and determined by Fourier Transform Infrared Spectroscopy(FTIR),nuclear magnetic resonance(NMR),thermogravimetric analysis(TGA),and gel permeation chromatography(GPC).The results indicate that the terpolymers are random polymers and the yields are low,but the thermal decomposed temperature of terpolymers P(St/MAH/BA)is around 220 ℃ and the average molecular weights(Mw)achieve 1.189×105 g·mol-1.
文摘Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.