期刊文献+
共找到1,961篇文章
< 1 2 99 >
每页显示 20 50 100
Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices
1
作者 So-Eun Jeon Ye-Sol Oh +1 位作者 Yeon-Ji Lee Il-Gu Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1669-1687,共19页
With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signatu... With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices. 展开更多
关键词 Feature selection lightweight device machine learning Internet of Things malicious traffic
下载PDF
SCIRD: Revealing Infection of Malicious Software in Edge Computing-Enabled IoT Networks
2
作者 Jiehao Ye Wen Cheng +3 位作者 Xiaolong Liu Wenyi Zhu Xuan’ang Wu Shigen Shen 《Computers, Materials & Continua》 SCIE EI 2024年第5期2743-2769,共27页
The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which ... The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks. 展开更多
关键词 Edge computing Internet of Things malicious software propagation model HETEROGENEITY
下载PDF
Detecting Malicious Uniform Resource Locators Using an Applied Intelligence Framework
3
作者 Simona-Vasilica Oprea Adela Bara 《Computers, Materials & Continua》 SCIE EI 2024年第6期3827-3853,共27页
The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Unif... The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99. 展开更多
关键词 Detecting malicious URL CLASSIFIERS text to feature deep learning ranking algorithms feature building time
下载PDF
A GAN-EfficientNet-Based Traceability Method for Malicious Code Variant Families
4
作者 Li Li Qing Zhang Youran Kong 《Computers, Materials & Continua》 SCIE EI 2024年第7期801-818,共18页
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ... Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code. 展开更多
关键词 malicious code variant traceability feature reuse lightweight neural networks code visualization attention mechanism
下载PDF
A New Malicious Code Classification Method for the Security of Financial Software
5
作者 Xiaonan Li Qiang Wang +2 位作者 Conglai Fan Wei Zhan Mingliang Zhang 《Computer Systems Science & Engineering》 2024年第3期773-792,共20页
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia... The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code. 展开更多
关键词 malicious code lightweight convolution densely connected network channel domain attention mechanism
下载PDF
Lightweight Malicious Code Classification Method Based on Improved Squeeze Net
6
作者 Li Li Youran Kong Qing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期551-567,共17页
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw... With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations. 展开更多
关键词 Lightweight neural network malicious code classification feature slicing feature splicing multi-size depthwise separable convolution
下载PDF
BSTFNet:An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features
7
作者 Hong Huang Xingxing Zhang +2 位作者 Ye Lu Ze Li Shaohua Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第3期3929-3951,共23页
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me... While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic. 展开更多
关键词 Encrypted malicious traffic classification bidirectional encoder representations from transformers text convolutional neural network bidirectional gated recurrent unit
下载PDF
PowerDetector:Malicious PowerShell Script Family Classification Based on Multi-Modal Semantic Fusion and Deep Learning 被引量:1
8
作者 Xiuzhang Yang Guojun Peng +2 位作者 Dongni Zhang Yuhang Gao Chenguang Li 《China Communications》 SCIE CSCD 2023年第11期202-224,共23页
Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and ... Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks. 展开更多
关键词 deep learning malicious family detection multi-modal semantic fusion POWERSHELL
下载PDF
Detecting While Accessing:A Semi-Supervised Learning-Based Approach for Malicious Traffic Detection in Internet of Things 被引量:1
9
作者 Yantian Luo Hancun Sun +3 位作者 Xu Chen Ning Ge Wei Feng Jianhua Lu 《China Communications》 SCIE CSCD 2023年第4期302-314,共13页
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi... In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data. 展开更多
关键词 malicious traffic detection semi-supervised learning Internet of Things(Io T) TRANSFORMER masked behavior model
下载PDF
A Study of Ensemble Feature Selection and Adversarial Training for Malicious User Detection
10
作者 Linjie Zhang Xiaoyan Zhu Jianfeng Ma 《China Communications》 SCIE CSCD 2023年第10期212-229,共18页
The continuously booming of information technology has shed light on developing a variety of communication networks,multimedia,social networks and Internet of Things applications.However,users inevitably suffer from t... The continuously booming of information technology has shed light on developing a variety of communication networks,multimedia,social networks and Internet of Things applications.However,users inevitably suffer from the intrusion of malicious users.Some studies focus on static characteristics of malicious users,which is easy to be bypassed by camouflaged malicious users.In this paper,we present a malicious user detection method based on ensemble feature selection and adversarial training.Firstly,the feature selection alleviates the dimension disaster problem and achieves more accurate classification performance.Secondly,we embed features into the multidimensional space and aggregate it into a feature map to encode the explicit content preference and implicit interaction preference.Thirdly,we use an effective ensemble learning which could avoid over-fitting and has good noise resistance.Finally,we propose a datadriven neural network detection model with the regularization technique adversarial training to deeply analyze the characteristics.It simplifies the parameters,obtaining more robust interaction features and pattern features.We demonstrate the effectiveness of our approach with numerical simulation results for malicious user detection,where the robustness issues are notable concerns. 展开更多
关键词 malicious user detection feature selection ensemble learning adversarial training
下载PDF
Malicious URL Classification Using Artificial Fish Swarm Optimization and Deep Learning
11
作者 Anwer Mustafa Hilal Aisha Hassan Abdalla Hashim +5 位作者 Heba G.Mohamed Mohamed K.Nour Mashael M.Asiri Ali M.Al-Sharafi Mahmoud Othman Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第1期607-621,共15页
Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era.Malicious Uniform Resource Locators(URLs)can be embedded in email or Twitter and used... Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era.Malicious Uniform Resource Locators(URLs)can be embedded in email or Twitter and used to lure vulnerable internet users to implement malicious data in their systems.This may result in compromised security of the systems,scams,and other such cyberattacks.These attacks hijack huge quantities of the available data,incurring heavy financial loss.At the same time,Machine Learning(ML)and Deep Learning(DL)models paved the way for designing models that can detect malicious URLs accurately and classify them.With this motivation,the current article develops an Artificial Fish Swarm Algorithm(AFSA)with Deep Learning Enabled Malicious URL Detection and Classification(AFSADL-MURLC)model.The presented AFSADL-MURLC model intends to differentiate the malicious URLs from genuine URLs.To attain this,AFSADL-MURLC model initially carries out data preprocessing and makes use of glove-based word embedding technique.In addition,the created vector model is then passed onto Gated Recurrent Unit(GRU)classification to recognize the malicious URLs.Finally,AFSA is applied to the proposed model to enhance the efficiency of GRU model.The proposed AFSADL-MURLC technique was experimentally validated using benchmark dataset sourced from Kaggle repository.The simulation results confirmed the supremacy of the proposed AFSADL-MURLC model over recent approaches under distinct measures. 展开更多
关键词 malicious URL CYBERSECURITY deep learning machine learning metaheuristics gated recurrent unit
下载PDF
The Malicious Uses of Artificial Intelligence(MUAI)and Psychological Security in the Case of Iran
12
作者 Davoud Gharayagh-Zandi 《International Relations and Diplomacy》 2023年第6期266-270,共5页
Artificial intelligence(AI)is attracted great attention in the world,because its uses are going to be prevailed in many areas and issues.As a result,keeping the situation to use AI in the positive and optimistic manne... Artificial intelligence(AI)is attracted great attention in the world,because its uses are going to be prevailed in many areas and issues.As a result,keeping the situation to use AI in the positive and optimistic manner would be meant that it is well-protected the society’s mentality.The malicious uses of AI in the case of Iran are mattered by the three issues-the huge sanctions imposed to Iran by the Western countries,the psychological dissonance there is in the Iran’s decision making process,and by ontological security perceived by the Iran’s officials.It is tried to examine them in accordance with the technical,cognitive,and the institutional levels of AI. 展开更多
关键词 AI Iran malicious uses psychological security public policy
下载PDF
论注册商标使用义务规范的体系化构建——兼评商标法修订草案征求意见稿相关条款 被引量:2
13
作者 王莲峰 胡丹阳 《知识产权》 CSSCI 北大核心 2024年第2期44-66,共23页
2023年1月13日,国家知识产权局公布《中华人民共和国商标法修订草案(征求意见稿)》,强调“强化商标使用义务,引导商标注册回归制度本源”是本次修法主要内容之一。目前,我国注册商标使用义务制度存在概念模糊、注册审查程序中使用意图... 2023年1月13日,国家知识产权局公布《中华人民共和国商标法修订草案(征求意见稿)》,强调“强化商标使用义务,引导商标注册回归制度本源”是本次修法主要内容之一。目前,我国注册商标使用义务制度存在概念模糊、注册审查程序中使用意图与承诺使用的取舍不定、核准注册后权利人违背使用义务的法律责任不明等问题。在明晰注册商标专用权人商标使用概念的基础上,以“注册审查—权利维持—权利处分—权利救济”为轴,全过程设定注册商标使用义务,可以有效提高商标使用的法律地位,引导商标注册制回归“商标的生命在于使用”的制度本源。 展开更多
关键词 商标使用 使用义务 恶意注册
下载PDF
恶意民事诉讼侵权行为与损害赔偿责任 被引量:2
14
作者 杨立新 《上海政法学院学报(法治论丛)》 2024年第1期32-52,共21页
恶意民事诉讼是指当事人没有诉权或者超出合法诉权范围,故意提起民事诉讼,意图实现侵害对方当事人或者第三人民事权益非法目的的一般侵权行为,包括恶意诉讼、滥用诉权和虚假诉讼三种类型。恶意民事诉讼是一般侵权行为,在《民法典》侵权... 恶意民事诉讼是指当事人没有诉权或者超出合法诉权范围,故意提起民事诉讼,意图实现侵害对方当事人或者第三人民事权益非法目的的一般侵权行为,包括恶意诉讼、滥用诉权和虚假诉讼三种类型。恶意民事诉讼是一般侵权行为,在《民法典》侵权责任编不必作特别规定,直接适用《民法典》第1165条第1款规定的侵权行为一般条款即可。《民事案件案由规定》“侵权责任纠纷”项下的第三级案由和第四级案由没有规定“恶意民事诉讼责任纠纷”案由,可以直接适用第二级案由即“侵权责任纠纷”确定案由。恶意民事诉讼侵权责任构成应当依照《民法典》第1165条第1款规定并结合恶意民事诉讼的特点认定,损害赔偿责任应当依照《民法典》第1184条、第1182条和第1183条第1款等规定的方法确定。 展开更多
关键词 恶意民事诉讼 一般侵权行为 责任构成 类型化 损害赔偿
下载PDF
专利权恶意取得及其规制路径 被引量:1
15
作者 易继明 《知识产权》 CSSCI 北大核心 2024年第1期6-23,共18页
伪造并不真实存在的技术方案、明知为现有技术(或现有设计)、故意侵犯他人技术秘密并申请专利,以及违反保密审查义务在外国申请专利后又在中国国内申请专利等四种行为,是典型的专利权恶意取得行为。根据这些行为所侵害的法益为公共利益... 伪造并不真实存在的技术方案、明知为现有技术(或现有设计)、故意侵犯他人技术秘密并申请专利,以及违反保密审查义务在外国申请专利后又在中国国内申请专利等四种行为,是典型的专利权恶意取得行为。根据这些行为所侵害的法益为公共利益或是特定第三人利益,可以将其分为无效的专利权恶意取得行为与可撤销的专利权恶意取得行为。对于前者,任何单位或者个人都可以向国务院专利行政部门请求宣告专利权无效;对于后者,只能由利益受到损害的特定第三人主张撤销原授权决定,并请求变更权利归属。专利权恶意取得行为的规制,既需要司法机关在个案中层层把关、细致甄别,又需要行政审查机关注重源头治理、加强事后惩戒,形成协同治理体系。 展开更多
关键词 专利权 恶意取得 法律行为 无效形态 可撤销形态
下载PDF
基于多频特征学习的恶意代码变种分类
16
作者 靳黎忠 薛慧琴 +2 位作者 段明博 赵旭俊 高改梅 《计算机工程与设计》 北大核心 2024年第7期1934-1940,共7页
针对恶意代码变种分类方法没有充分对原始输入进行分析的问题,提出一种更加高效的基于深度学习的办法,使用卷积神经网络对多频信息进行学习。对恶意代码转化而成的图像进行研究,利用小波变换进行多频和多层次的分析,抓住低频和高频特征... 针对恶意代码变种分类方法没有充分对原始输入进行分析的问题,提出一种更加高效的基于深度学习的办法,使用卷积神经网络对多频信息进行学习。对恶意代码转化而成的图像进行研究,利用小波变换进行多频和多层次的分析,抓住低频和高频特征;针对多频信息输入,设计一种多频特征学习模块,充分挖掘其中有用信息。实验结果表明,该方法在Malimg数据集上,相比其它两种恶意代码分类办法,分别取得了1.5%和0.8%的效果提升。 展开更多
关键词 恶意代码分类 多频特征 深度学习 小波变换 灰度图像 卷积神经网络 恶意代码家族
下载PDF
基于ViT的轻量级恶意代码检测架构
17
作者 黄保华 杨婵娟 +1 位作者 熊宇 庞飔 《信息网络安全》 CSCD 北大核心 2024年第9期1409-1421,共13页
随着信息社会的快速发展,恶意代码变体日益增多,给现有的检测方法带来了挑战。为了提高恶意代码变体的检测准确率和效率,文章提出一种新的混合架构FasterMalViT。该架构通过融合部分卷积结构改进ViT,显著提升其在恶意代码检测领域的性... 随着信息社会的快速发展,恶意代码变体日益增多,给现有的检测方法带来了挑战。为了提高恶意代码变体的检测准确率和效率,文章提出一种新的混合架构FasterMalViT。该架构通过融合部分卷积结构改进ViT,显著提升其在恶意代码检测领域的性能。为了解决引入卷积操作导致参数量增加的问题,文章采用可分离自注意力机制替代传统的多头注意力,有效减少了参数量,降低了计算成本。针对恶意代码数据集中各类样本分布不均衡的问题,文章引入类别平衡焦点损失函数,引导模型在训练过程中更关注样本数量较少的类别,从而提高难分类别的性能。在Microsoft BIG、Malimg数据集和MalwareBazaar数据集上的实验结果表明,FasterMalViT具有较好的检测性能和泛化能力。 展开更多
关键词 恶意代码 VIT 部分卷积 可分离自注意力
下载PDF
基于Ngram-TFIDF的深度恶意代码可视化分类方法
18
作者 王金伟 陈正嘉 +2 位作者 谢雪 罗向阳 马宾 《通信学报》 EI CSCD 北大核心 2024年第6期160-175,共16页
随着恶意代码规模和种类的不断增加,传统恶意代码分析方法由于依赖于人工提取特征,变得耗时且易出错,因此不再适用。为了提高检测效率和准确性,提出了一种基于Ngram-TFIDF的深度恶意代码可视化分类方法。结合N-gram和TF-IDF技术对恶意... 随着恶意代码规模和种类的不断增加,传统恶意代码分析方法由于依赖于人工提取特征,变得耗时且易出错,因此不再适用。为了提高检测效率和准确性,提出了一种基于Ngram-TFIDF的深度恶意代码可视化分类方法。结合N-gram和TF-IDF技术对恶意代码数据集进行处理,并将其转化为灰度图。随后,引入CBAM并调整密集块数量,构建DenseNet88_CBAM网络模型用于灰度图分类。实验结果表明,所提方法在恶意代码家族分类和类型分类上分别提高了1.11%和9.28%的准确率,取得了优越的分类效果。 展开更多
关键词 深度学习 数据可视化 恶意代码检测和分类
下载PDF
新型配电系统分布式经济调度信息安全问题研究综述
19
作者 乐健 郎红科 +3 位作者 谭甜源 綦淦 王靖 汪维豪 《电力系统自动化》 EI CSCD 北大核心 2024年第12期177-191,共15页
随着大规模高比例的分布式电源接入电网运行,分布式经济调度系统因其优势显著受到更多的关注。但是,该系统特有的分布式通信构架、优化问题迭代求解过程和多利益主体参与模式为从系统内部和外部实施网络攻击提供了更宽广的时空条件,攻... 随着大规模高比例的分布式电源接入电网运行,分布式经济调度系统因其优势显著受到更多的关注。但是,该系统特有的分布式通信构架、优化问题迭代求解过程和多利益主体参与模式为从系统内部和外部实施网络攻击提供了更宽广的时空条件,攻击模式和手段更加复杂多样,解决信息安全问题是提高分布式经济调度系统实用化程度的重要前提和基础。文中对分布式经济调度系统可能出现的信息安全问题及应对措施的研究现状进行了综述。首先,讨论了电力系统各种通信技术对分布式经济调度系统的适应性以及通信技术本身存在的安全风险;其次,介绍了外部网络攻击和内部恶意行为两类典型的信息安全问题,并进行了相关的特点分析和影响评估;然后,归纳和分析了两类信息安全问题的检测、预防、抑制措施和方法;最后,对信息安全问题模型的建立和综合安全防御体系构建进行了探讨。 展开更多
关键词 分布式经济调度 信息安全 外部网络攻击 内部恶意行为 信息物理系统 区块链
下载PDF
基于本地差分隐私的异步横向联邦安全梯度聚合方案
20
作者 魏立斐 张无忌 +2 位作者 张蕾 胡雪晖 王绪安 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期3010-3018,共9页
联邦学习作为一种新兴的分布式机器学习框架,通过在用户私有数据不出域的情况下进行联合建模训练,有效地解决了传统机器学习中的数据孤岛和隐私泄露问题。然而,联邦学习存在着训练滞后的客户端拖累全局训练速度的问题,异步联邦学习允许... 联邦学习作为一种新兴的分布式机器学习框架,通过在用户私有数据不出域的情况下进行联合建模训练,有效地解决了传统机器学习中的数据孤岛和隐私泄露问题。然而,联邦学习存在着训练滞后的客户端拖累全局训练速度的问题,异步联邦学习允许用户在本地完成模型更新后立即上传到服务端并参与到聚合任务中,而无需等待其他用户训练完成。然而,异步联邦学习也存在着无法识别恶意用户上传的错误模型,以及泄露用户隐私的问题。针对这些问题,该文设计一种面向隐私保护的异步联邦的安全梯度聚合方案(SAFL)。用户采用本地差分隐私策略,对本地训练的模型添加扰动并上传到服务端,服务端通过投毒检测算法剔除恶意用户,以实现安全聚合(SA)。最后,理论分析和实验表明在异步联邦学习的场景下,提出的方案能够有效识别出恶意用户,保护用户的本地模型隐私,减少隐私泄露风险,并相对于其他方案在模型的准确率上有较大的提升。 展开更多
关键词 安全聚合 本地差分隐私 隐私保护 恶意投毒攻击 异步联邦学习
下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部