期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
牛分枝杆菌哺乳动物细胞侵袭蛋白4E的原核表达、纯化及其圆二色谱分析
1
作者 徐广贤 赵德明 +2 位作者 周向梅 尹晓敏 杨建民 《畜牧兽医学报》 CAS CSCD 北大核心 2007年第1期84-88,共5页
为了阐明牛分枝杆菌侵入宿主细胞和在肺泡巨噬细胞长期存活的机理,本研究以牛分枝杆菌的DNA为模板,通过PCR的方法扩增克隆牛分枝杆菌哺乳动物细胞侵袭蛋白4E(Mammalian cell-entry protein 4E,mce4 E)基因,将所扩增基因克隆于原核表达载... 为了阐明牛分枝杆菌侵入宿主细胞和在肺泡巨噬细胞长期存活的机理,本研究以牛分枝杆菌的DNA为模板,通过PCR的方法扩增克隆牛分枝杆菌哺乳动物细胞侵袭蛋白4E(Mammalian cell-entry protein 4E,mce4 E)基因,将所扩增基因克隆于原核表达载体pET30a(+)并进行测序,结果显示该基因与GenBank上所公布的牛分枝杆菌和人分枝杆菌mce4 E基因同源性为100%。将重组表达载体转入宿主菌BL21进行诱导表达,表达蛋白经SDS-PAGE分析和Western-blotting免疫印迹鉴定,结果证明目的蛋白获得高效表达,表达量占菌体总量的53.3%,分子量约为45 ku;利用Ni-NTA琼脂糖柱对表达蛋白进行纯化,纯化率大于95%;纯化的蛋白经过透析复性、圆二色谱(CD)测定,结果表明重组蛋白为典型的α螺旋型结构,经Jascow32软件分析计算,mce4E蛋白含有39.1%的α螺旋,60.9%的无规卷曲,无β-折叠和转角,为进一步开展牛分枝杆菌致病机理的研究和寻找新的药物作用靶位点奠定了基础。 展开更多
关键词 牛分枝杆菌 哺乳动物细胞侵入蛋白 原核表达 圆二色谱(CD)
下载PDF
网络药理学结合体内实验探讨肺康颗粒对慢性阻塞性肺疾病大鼠Hippo信号通路核心分子MST1/2的影响 被引量:2
2
作者 冯浠镰 张伟 +1 位作者 刘小虹 杨柳柳 《广州中医药大学学报》 CAS 2022年第8期1899-1905,共7页
【目的】通过网络药理学结合体内实验观察肺康颗粒对慢性阻塞性肺疾病(COPD)的治疗机制。【方法】网络药理学:利用R语言运算,对肺康颗粒-COPD交集基因靶点进行京都基因与基因组百科全书(KEGG)富集分析,获取、筛选出Hippo信号通路。体内... 【目的】通过网络药理学结合体内实验观察肺康颗粒对慢性阻塞性肺疾病(COPD)的治疗机制。【方法】网络药理学:利用R语言运算,对肺康颗粒-COPD交集基因靶点进行京都基因与基因组百科全书(KEGG)富集分析,获取、筛选出Hippo信号通路。体内实验:将70只大鼠随机分成正常组,模型组,肺康颗粒低、中、高组,哺乳动物不育系20样激酶(MST)抑制剂组和地塞米松组等7组,除正常组,其余各组大鼠构建COPD模型,对应给药20周后,采用荧光定量聚合酶链反应(PCR)法检测肺组织Toll样受体4(TLR4)、MST1/2、核因子kappaB抑制蛋白(IκB)、Rac1 mRNA表达水平,苏木素-伊红(HE)染色法观察肺组织病理学变化。【结果】经网络药理学分子对接KEGG通路分析得到Hippo信号通路(P<0.05)。体内实验结果显示:与正常组比较,模型组和MST抑制剂组大鼠肺组织TLR4、MST1/2、IκB、Rac1的mRNA表达水平下降(P<0.05),可见肺泡结构破坏严重;与模型组和MST抑制剂组比较,肺康颗粒低、中、高剂量组TLR4、MST1/2、IκB、Rac1的mRNA表达水平升高(P<0.05),肺泡结构破坏程度减轻。【结论】肺康颗粒可能通过调节Hippo信号通路核心分子MST1/2的表达,减轻COPD大鼠肺组织损伤。 展开更多
关键词 肺康颗粒 慢性阻塞性肺疾病 网络药理学 Hippo信号通路 哺乳动物不育系20样激酶 TOLL样受体4 核因子抑制蛋白kappaB RAC1 大鼠
下载PDF
Mst1和WASp共同调控调节性T细胞外周稳态及抑制功能 被引量:2
3
作者 胡乐玲 杨迪 +5 位作者 杜作晨 李晗 阮昌顺 周丽佳 简鼎 黄璐 《免疫学杂志》 CAS CSCD 北大核心 2021年第6期461-471,共11页
目的以Mst1 KO、WASp KO、Mst1-WASp DKO和野生型模型小鼠为研究对象,探究Mst1和WASp共同作用对调节性T细胞(Treg)发育和功能影响及作用机制。方法使用流式细胞仪检测胸腺和脾脏中T细胞各亚群特别是Treg细胞的比例、数量及其相关分子的... 目的以Mst1 KO、WASp KO、Mst1-WASp DKO和野生型模型小鼠为研究对象,探究Mst1和WASp共同作用对调节性T细胞(Treg)发育和功能影响及作用机制。方法使用流式细胞仪检测胸腺和脾脏中T细胞各亚群特别是Treg细胞的比例、数量及其相关分子的表达,并通过构建DKO骨髓嵌合小鼠验证表型变化是否为自发性。结果与野生型小鼠相比,DKO小鼠胸腺的T细胞各亚群比例无明显变化,而脾脏中T细胞各亚群细胞数均降低,除活化T细胞和Treg的比例升高外,其他各T细胞亚群比例均降低。DKO小鼠脾脏Treg中的NRP-1表达减少,CTLA-4的表达增加。骨髓嵌合动物模型中Treg的检测结果与上述一致。结论 Mst1与WASp以细胞固有方式共同影响Treg细胞外周稳态和功能,其机制可能涉及NRP-1和CTLA-4。 展开更多
关键词 哺乳动物STE20样激酶 Wiskott-Aldrich综合征蛋白 调节性T细胞 神经纤毛蛋白-1 细胞毒性T淋巴细胞相关蛋白4
下载PDF
Hepatitis C virus infection and insulin resistance 被引量:9
4
作者 Sandip K Bose Ranjit Ray 《World Journal of Diabetes》 SCIE CAS 2014年第1期52-58,共7页
Approximately 170 million people worldwide are chronically infected with hepatitis C virus(HCV).Chronic HCV infection is the leading cause for the development of liver fibrosis,cirrhosis,hepatocellular carcinoma(HCC)a... Approximately 170 million people worldwide are chronically infected with hepatitis C virus(HCV).Chronic HCV infection is the leading cause for the development of liver fibrosis,cirrhosis,hepatocellular carcinoma(HCC)and is the primary cause for liver transplantation in the western world.Insulin resistance is one of the pathological features in patients with HCV infection and often leads to development of typeⅡdiabetes.Insulin resistance plays an important role in the development of various complications associated with HCV infection.Recent evidence indicates that HCV associated insulin resistance may result in hepatic fibrosis,steatosis,HCC and resistance to anti-viral treatment.Thus,HCV associated insulin resistance is a therapeutic target at any stage of HCV infection.HCV modulates normal cellular gene expression and interferes with the insulin signaling pathway.Various mechanisms have been proposed in regard to HCV mediated insulin resistance,involving up regulation of inflammatory cytokines,like tumor necrosis factor-α,phosphorylation of insulin-receptor substrate-1,Akt,up-regulation of gluconeogenic genes like glucose 6 phosphatase,phosphoenolpyruvate carboxykinase 2,and accumulation of lipid droplets.In this review,we summarize the available information on how HCV infection interferes with insulin signaling pathways resulting in insulin resistance. 展开更多
关键词 Hepatitis C virus INSULIN resistance INSULIN receptor substrate 1 protein kinase B mammalian tar-get of rapamycin/S6K1 SUPPRESSOR of cytokine signal-ing 3 Glucose transporter-4 Lipid metabolism ANTI-VIRAL therapy
下载PDF
RNA polymerases in plasma cells trav-ELL2 the beat of a different drum
5
作者 Sage M Smith Nolan T Carew Christine Milcarek 《World Journal of Immunology》 2015年第3期99-112,共14页
There is a major transformation in gene expression between mature B cells (including follicular, marginal zone, and germinal center cells) and antibody secreting cells (ASCs), i.e. , ASCs, (including plasma blas... There is a major transformation in gene expression between mature B cells (including follicular, marginal zone, and germinal center cells) and antibody secreting cells (ASCs), i.e. , ASCs, (including plasma blasts, splenic plasma cells, and long-lived bone marrow plasma cells). This signifcant change-over occurs to accommodate the massive amount of secretory-specific immunoglobulin that ASCs make and the export processes itself. It is well known that there is an up-regulation of a small number of ASC-specific transcription factors Prdm1 (B-lymphocyte-induced maturation protein 1), interferon regulatory factor 4, and Xbp1, and the reciprocal down-regulation of Pax5, Bcl6 and Bach2, which maintain the B cell program. Less well appreciated are the major alterations in transcription elongation and RNA proce-ssing occurring between B cells and ASCs. The three ELL family members ELL1, 2 and 3 have different protein sequences and potentially distinct cellular roles in transcription elongation. ELL1 is involved in DNA repair and small RNAs while ELL3 was previously described as either testis or stem-cell specifc. After B cell stimulation to ASCs, ELL3 levels fall precipitously while ELL1 falls off slightly. ELL2 is induced at least 10-fold in ASCs relative to B cells. All of these changes cause the RNA Polymerase Ⅱ in ASCs to acquire different properties, leading to differences in RNA processing and histone modifcations. 展开更多
关键词 Interferon regulatory factor 4 ANTIBODY secreting cells B cell differentiation ELL2 Secretory-specific ANTIBODY B-lymphocyte-induced maturation protein 1 OCA-B Super elongation complex XBP-1 mammalian target of RAPAMYCIN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部