This study explores the significance,current research landscape,and conceptualization of sports safety promotion.Safety in sports is fundamental to youth physical activities,and an excessive focus on or neglect of saf...This study explores the significance,current research landscape,and conceptualization of sports safety promotion.Safety in sports is fundamental to youth physical activities,and an excessive focus on or neglect of safety is unwarranted.Globally,numerous countries have extensively researched sports safety promotion and implemented diverse strategies.Drawing from KABP(Knowledge,Attitude,Behavior,Practice)theory and 4M(Man,Machine,Medium,Management)management,this paper presents a conceptual framework for sports safety promotion.It integrates these theories to devise a comprehensive accident prevention model within a sports safety promotion system.The framework prioritizes enhancing students’safety literacy and underscores the practical application of safety knowledge and skills in simulated sports settings following structured safety education.It aims to enhance students’competency and proficiency in averting sports-related injuries.展开更多
Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especi...Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.展开更多
The paper presents the conceptual and operational basis of the creation of IDSS based on our recent research experience. In this paper, an intelligent decision support system, IDSS is defined as: any interactive syste...The paper presents the conceptual and operational basis of the creation of IDSS based on our recent research experience. In this paper, an intelligent decision support system, IDSS is defined as: any interactive system that is specially designed to improve the decision making of its user by extending the user's cognitive decision making abilities. As a result, this view of man-machine joint cognitive system stresses the need to use computational technology to aid the user in the decision making process. And the human's role is to achieve total systems's objectives. The paper outlines the designing procedure in successive steps. First, the decision maker's cognitive needs for decision support are identified. Second, the computationally realizable support functions are defined that could be provided by IDSS. Then, the specific techniques that would best fill the decision needs are discussed. And finally, for system implementation the modern computational technology infrastructure is emphasized.展开更多
A new column design software,TCD,was developed using visual basic for windows.The TCD interfaces are very friendly to facilitate communication between the user and the computer.TCD can be used not only to design new c...A new column design software,TCD,was developed using visual basic for windows.The TCD interfaces are very friendly to facilitate communication between the user and the computer.TCD can be used not only to design new columns,but also to check old columns for retray application.TCD can be easily learned and mastered.Several design examples are using TCD to display the advantages of TCD.This paper introduces the interface design process,functions and advantages of TCD.展开更多
文摘This study explores the significance,current research landscape,and conceptualization of sports safety promotion.Safety in sports is fundamental to youth physical activities,and an excessive focus on or neglect of safety is unwarranted.Globally,numerous countries have extensively researched sports safety promotion and implemented diverse strategies.Drawing from KABP(Knowledge,Attitude,Behavior,Practice)theory and 4M(Man,Machine,Medium,Management)management,this paper presents a conceptual framework for sports safety promotion.It integrates these theories to devise a comprehensive accident prevention model within a sports safety promotion system.The framework prioritizes enhancing students’safety literacy and underscores the practical application of safety knowledge and skills in simulated sports settings following structured safety education.It aims to enhance students’competency and proficiency in averting sports-related injuries.
基金Research and Development Program of Xi’an Modern Chemistry Research Institute of Chnia(Grant No.204J201916234/6)Key Project of Liuzhou Science and Technology Bureau of China(Grant No.2020PAAA0601).
文摘Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.
文摘The paper presents the conceptual and operational basis of the creation of IDSS based on our recent research experience. In this paper, an intelligent decision support system, IDSS is defined as: any interactive system that is specially designed to improve the decision making of its user by extending the user's cognitive decision making abilities. As a result, this view of man-machine joint cognitive system stresses the need to use computational technology to aid the user in the decision making process. And the human's role is to achieve total systems's objectives. The paper outlines the designing procedure in successive steps. First, the decision maker's cognitive needs for decision support are identified. Second, the computationally realizable support functions are defined that could be provided by IDSS. Then, the specific techniques that would best fill the decision needs are discussed. And finally, for system implementation the modern computational technology infrastructure is emphasized.
文摘A new column design software,TCD,was developed using visual basic for windows.The TCD interfaces are very friendly to facilitate communication between the user and the computer.TCD can be used not only to design new columns,but also to check old columns for retray application.TCD can be easily learned and mastered.Several design examples are using TCD to display the advantages of TCD.This paper introduces the interface design process,functions and advantages of TCD.