The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-c...The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-computer interface(BCI)to awareness detection with a passive auditory stimulation paradigm.12 subjects with normal hearing were invited to collect electroencephalogram(EEG)based on a BCI communication system,in which EEG signals are transmitted wirelessly.After necessary preprocessing,RBF-SVM and EEGNet were used for algorithm realization and analysis.For a single subject,RBF-SVM can distinguish his(her)name stimuli awareness with classification accuracies ranging from 60-95%.EEGNet was used to learn all subjects'data and improved accuracy to 78.04%for characteristics finding and model generalization.Moreover,we completed the supplementary analysis work from the time domain and time-frequency domain.This study applied BCI communication to human awareness detection,proposed a passive auditory paradigm,and proved the effectiveness,which could be an inspiration for brain,mental or physical diseases diagnosis and detection.展开更多
Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. He...Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.展开更多
GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed un...GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed understanding of the GaP(110)-water interfacial structure is of great importance.Ab initio molecular dynamics(AIMD)can be used for obtaining the microscopic information of the interfacial structure.However,the GaP(110)-water interface cannot converge to an equilibrated structure at the time scale of the AIMD simulation.In this work,we perform the machine learning accelerated molecular dynamics(MLMD)to overcome the difficulty of insufficient sampling by AIMD.With the help of MLMD,we unravel the microscopic information of the structure of the GaP(110)-water interface,and obtain a deeper understanding of the mechanisms of proton transfer at the GaP(110)-water interface,which will pave the way for gaining valuable insights into photoelectrocatalytic mechanisms and improving the performance of photoelectrochemical cells.展开更多
This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One archit...This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.展开更多
With the introduction of high-speed trains into chinese railway system, closeattention should be paid to the aspects of safety in hish-speed railways. Thereare many interfaces which are very important and directly rel...With the introduction of high-speed trains into chinese railway system, closeattention should be paid to the aspects of safety in hish-speed railways. Thereare many interfaces which are very important and directly related to drivmgsafety. This paper focuses on features of design and analyses the principles ofsafety.展开更多
As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the s...As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.展开更多
The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are res...The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are restricting the advance and application of BCI,especially for the BCI based on motor imagery(MI).In this paper,we reviewed the recent development in the machine learning algorithm used in the MI-based BCI,which may provide potential solutions for addressing the issue.We classified these algorithms into two categories,namely,and enhancing the representation and expanding the training set.Specifically,these methods of enhancing the representation of features collected from few EEG trials are based on extracting features of multiple bands,regularization,and so on.The methods of expanding the training dataset include approaches of transfer learning(session to session transfer,subject to subject transfer)and generating artificial EEG data.The result of these techniques showed the resolution of the challenges to some extent.As a developing research area,the study of BCI algorithms in little-labeled data is increasingly requiring the advancement of human brain physiological structure research and more transfer learning algorithms research.展开更多
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa...The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process.展开更多
In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish ...In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.展开更多
Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common d...Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common dilemmas,which realize highprecision and stable touch detection but are rigid,bulky,and thick or achieve high flexibility to wear but lose precision.Here,we construct highly bending-insensitive,unpixelated,and waterproof epidermal interfaces(BUW epidermal interfaces)and demonstrate their interactive applications of conformal human–machine integration.The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection,high flexibility,rapid response time,excellent stability,and versatile“cut-and-paste”character.Regardless of whether being flat or bent,the BUW epidermal interface can be conformally attached to the human skin for real-time,comfortable,and unrestrained interactions.This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics,which offers a new technology route and may further broaden human–machine interactions toward metaverse.展开更多
Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discr...Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters.展开更多
A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In ...A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In the first stage, minimal reduced subsets of components, which give full information about the state of the whole system, are generated by determining functional dependencies between components. This is achieved by using a temporal logic proof obligation to check whether the state of all components can be inferred from the state of components in a subset in specified situations that the human operator needs to detect, with respect to a finite state machine model of the system and other human operator behavior. Generation of reduced subsets is automated with the help of a temporal logic model checker. The second stage determines the interconnections between components to be displayed in the reduced system so that the natural overall graphical structure of the system is maintained. A formal definition of an aesthetic for the required subgraph of a graph representation of the full system, containing the reduced subset of components, is given for this purpose. The methodology is demonstrated by a case study.展开更多
Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be c...Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence,an obvious question arises: whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object(lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation.展开更多
Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from freque...Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM(support vector machines).The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments.And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's.The results indicate that the parameter of mean period represents mental tasks well for classification.Furthermore,the method of mean period is less computationally demanding,which indicates its potential use for online BCI systems.展开更多
A method is proposed to measure the process margin of the main steam inlet and outlet pipe of a nuclear power plant by using an industrial photogrammetry system. This method includes steps of preparation,image acquisi...A method is proposed to measure the process margin of the main steam inlet and outlet pipe of a nuclear power plant by using an industrial photogrammetry system. This method includes steps of preparation,image acquisition,image processing,and result analysis,as well as the final processing margin analysis,and so on. In particular,it suggests a specific method for target-point layout and design of shooting network for the main steam inlet and outlet pipe measurement,and then uses a method of sub-section photography and collation to measure the inner and outer surfaces of the nuclear power interface pipe. The machining tolerance analysis shows that the method can effectively test whether the machining tolerance data of the interface pipe's top surface,outer surface and the inner surface reach a critical value,which provides a reliable reference for the next step in this process,and it is a type of machining tolerance detection method worthy of popularisation.展开更多
In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neu...In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neuro-rehabilitation,robots,exoeskeletons,etc.Electroencephalography(EEG)is a technique commonly applied in capturing brain signals.It is incorporated in BCI systems since it has attractive features such as noninvasive nature,high time-resolution output,mobility and cost-effective.EEG classification process is highly essential in decision making process and it incorporates different processes namely,feature extraction,feature selection,and classification.With this motivation,the current research paper presents an Intelligent Optimal Fuzzy Support Vector Machine-based EEC recognition(IOFSVM-EEG)model for BCI system.Independent Component Analysis(ICA)technique is applied onto the proposed IOFSVM-EEG model to remove the artefacts that exist in EEG signal and to retain the meaningful EEG information.Besides,Common Spatial Pattern(CSP)-based feature extraction technique is utilized to derive a helpful set of feature vectors from the preprocessed EEG signals.Moreover,OFSVM method is applied in the classification of EEG signals,in which the parameters involved in FSVM are optimally tuned using Grasshopper Optimization Algorithm(GOA).In order to validate the enhanced EEG recognition outcomes of the proposed IOFSVM-EEG model,an extensive set of experiments was conducted.The outcomes were examined under distinct aspects.The experimental results highlighted the enhanced performance of the presented IOFSVM-EEG model over other state-of-the-art methods.展开更多
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which...Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%.展开更多
This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer...This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer to commence operation, monitor the status of the sprayer and its operation in the field, and intervene when needed (i.e., to stop or shut down). Design principles and guidelines were carefully selected to help develop a human-centered automation interface. Evaluation of the interface using a combination of heuristic, cognitive walkthrough, and user testing techniques revealed several strengths of the design as well as areas that needed further improvement. Overall, this paper provides guidelines that will assist other researchers to develop an ergonomic user interface for a fully autonomous agricultural machine.展开更多
基金supported by the Science and Technology Commission of Shanghai Municipality(STCSM)Research Fund(21JC1405300)to Fan Minthe National Key Research and Development Program of China(2018YFC0831102)sponsored by the Shanghai Key Research Laboratory of NSAI。
文摘The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-computer interface(BCI)to awareness detection with a passive auditory stimulation paradigm.12 subjects with normal hearing were invited to collect electroencephalogram(EEG)based on a BCI communication system,in which EEG signals are transmitted wirelessly.After necessary preprocessing,RBF-SVM and EEGNet were used for algorithm realization and analysis.For a single subject,RBF-SVM can distinguish his(her)name stimuli awareness with classification accuracies ranging from 60-95%.EEGNet was used to learn all subjects'data and improved accuracy to 78.04%for characteristics finding and model generalization.Moreover,we completed the supplementary analysis work from the time domain and time-frequency domain.This study applied BCI communication to human awareness detection,proposed a passive auditory paradigm,and proved the effectiveness,which could be an inspiration for brain,mental or physical diseases diagnosis and detection.
基金supported by the National Natural Science Foundation of China (62075006)the National Key R&D Program of China (2018YFB1500200)。
文摘Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.
基金the National Natural Science Foundation of China(22225302,21991151,21991150,22021001,92161113,91945301)the Fundamental Research Funds for the Central Universities(20720220009)+1 种基金the China Postdoctoral Science Foundation(2020 M682079)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110539)。
文摘GaP has been shown to be a promising photoelectrocatalyst for selective CO_(2)reduction to methanol.Due to the relevance of the interface structure to important processes such as electron/proton transfer,a detailed understanding of the GaP(110)-water interfacial structure is of great importance.Ab initio molecular dynamics(AIMD)can be used for obtaining the microscopic information of the interfacial structure.However,the GaP(110)-water interface cannot converge to an equilibrated structure at the time scale of the AIMD simulation.In this work,we perform the machine learning accelerated molecular dynamics(MLMD)to overcome the difficulty of insufficient sampling by AIMD.With the help of MLMD,we unravel the microscopic information of the structure of the GaP(110)-water interface,and obtain a deeper understanding of the mechanisms of proton transfer at the GaP(110)-water interface,which will pave the way for gaining valuable insights into photoelectrocatalytic mechanisms and improving the performance of photoelectrochemical cells.
文摘This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.
文摘With the introduction of high-speed trains into chinese railway system, closeattention should be paid to the aspects of safety in hish-speed railways. Thereare many interfaces which are very important and directly related to drivmgsafety. This paper focuses on features of design and analyses the principles ofsafety.
文摘As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.
文摘The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are restricting the advance and application of BCI,especially for the BCI based on motor imagery(MI).In this paper,we reviewed the recent development in the machine learning algorithm used in the MI-based BCI,which may provide potential solutions for addressing the issue.We classified these algorithms into two categories,namely,and enhancing the representation and expanding the training set.Specifically,these methods of enhancing the representation of features collected from few EEG trials are based on extracting features of multiple bands,regularization,and so on.The methods of expanding the training dataset include approaches of transfer learning(session to session transfer,subject to subject transfer)and generating artificial EEG data.The result of these techniques showed the resolution of the challenges to some extent.As a developing research area,the study of BCI algorithms in little-labeled data is increasingly requiring the advancement of human brain physiological structure research and more transfer learning algorithms research.
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
文摘The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process.
基金Project(2009ZX04001-073)supported by the Important National Science&Technology Specific Projects of ChinaProject(51105025)supported by the National Natural Science Foundation of China
文摘In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.
基金supported by National Natural Science Foundation of China(52202117,52232006,52072029,and 12102256)Collaborative Innovation Platform Project of Fu-Xia-Quan National Independent Innovation Demonstration Zone(3502ZCQXT2022005)+3 种基金Natural Science Foundation of Fujian Province of China(2022J01065)State Key Lab of Advanced Metals and Materials(2022-Z09)Fundamental Research Funds for the Central Universities(20720220075)the Ministry of Education,Singapore,under its MOE ARF Tier 2(MOE2019-T2-2-179).
文摘Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals,which is critical to the breakthrough development of metaverse.Interactive electronics face common dilemmas,which realize highprecision and stable touch detection but are rigid,bulky,and thick or achieve high flexibility to wear but lose precision.Here,we construct highly bending-insensitive,unpixelated,and waterproof epidermal interfaces(BUW epidermal interfaces)and demonstrate their interactive applications of conformal human–machine integration.The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection,high flexibility,rapid response time,excellent stability,and versatile“cut-and-paste”character.Regardless of whether being flat or bent,the BUW epidermal interface can be conformally attached to the human skin for real-time,comfortable,and unrestrained interactions.This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics,which offers a new technology route and may further broaden human–machine interactions toward metaverse.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030, 60701015, and 60736029.
文摘Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters.
基金This work was supported by the Royal Society in the UK (No.2004R1)An initial study appeared in Proceedings of IEEE International Conference on Systems,Man and Cybernetics,the Hague,Netherlands,pp.124-129,2004.
文摘A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In the first stage, minimal reduced subsets of components, which give full information about the state of the whole system, are generated by determining functional dependencies between components. This is achieved by using a temporal logic proof obligation to check whether the state of all components can be inferred from the state of components in a subset in specified situations that the human operator needs to detect, with respect to a finite state machine model of the system and other human operator behavior. Generation of reduced subsets is automated with the help of a temporal logic model checker. The second stage determines the interconnections between components to be displayed in the reduced system so that the natural overall graphical structure of the system is maintained. A formal definition of an aesthetic for the required subgraph of a graph representation of the full system, containing the reduced subset of components, is given for this purpose. The methodology is demonstrated by a case study.
基金Project supported by the World Academy of Science(TWAS)research grant 2018(Ref:18-121 RG/PHYS/AS I-FR3240303643)North South University(NSU),Bangladesh,internal research grant 2018-19&2019-20(approved by the members of BOT,NSU,Bangladesh)
文摘Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence,an obvious question arises: whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object(lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation.
基金This work was supportedin part by the National Natural Science Foundation of China(No.60271025,No.30370395)in part by the Science and Technology Depart ment of Shaanxi Province(No.2003K10-G24).
文摘Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM(support vector machines).The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments.And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's.The results indicate that the parameter of mean period represents mental tasks well for classification.Furthermore,the method of mean period is less computationally demanding,which indicates its potential use for online BCI systems.
基金Supported by the National Natural Science Foundation of China(No.41301598)the Open Fund Program of Henan Engineering Laboratory of Pollution Control and Coal Chemical Resource Comprehensive Utilization(No.502002-B07,502002-A-04)
文摘A method is proposed to measure the process margin of the main steam inlet and outlet pipe of a nuclear power plant by using an industrial photogrammetry system. This method includes steps of preparation,image acquisition,image processing,and result analysis,as well as the final processing margin analysis,and so on. In particular,it suggests a specific method for target-point layout and design of shooting network for the main steam inlet and outlet pipe measurement,and then uses a method of sub-section photography and collation to measure the inner and outer surfaces of the nuclear power interface pipe. The machining tolerance analysis shows that the method can effectively test whether the machining tolerance data of the interface pipe's top surface,outer surface and the inner surface reach a critical value,which provides a reliable reference for the next step in this process,and it is a type of machining tolerance detection method worthy of popularisation.
文摘In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neuro-rehabilitation,robots,exoeskeletons,etc.Electroencephalography(EEG)is a technique commonly applied in capturing brain signals.It is incorporated in BCI systems since it has attractive features such as noninvasive nature,high time-resolution output,mobility and cost-effective.EEG classification process is highly essential in decision making process and it incorporates different processes namely,feature extraction,feature selection,and classification.With this motivation,the current research paper presents an Intelligent Optimal Fuzzy Support Vector Machine-based EEC recognition(IOFSVM-EEG)model for BCI system.Independent Component Analysis(ICA)technique is applied onto the proposed IOFSVM-EEG model to remove the artefacts that exist in EEG signal and to retain the meaningful EEG information.Besides,Common Spatial Pattern(CSP)-based feature extraction technique is utilized to derive a helpful set of feature vectors from the preprocessed EEG signals.Moreover,OFSVM method is applied in the classification of EEG signals,in which the parameters involved in FSVM are optimally tuned using Grasshopper Optimization Algorithm(GOA).In order to validate the enhanced EEG recognition outcomes of the proposed IOFSVM-EEG model,an extensive set of experiments was conducted.The outcomes were examined under distinct aspects.The experimental results highlighted the enhanced performance of the presented IOFSVM-EEG model over other state-of-the-art methods.
文摘Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%.
文摘This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer to commence operation, monitor the status of the sprayer and its operation in the field, and intervene when needed (i.e., to stop or shut down). Design principles and guidelines were carefully selected to help develop a human-centered automation interface. Evaluation of the interface using a combination of heuristic, cognitive walkthrough, and user testing techniques revealed several strengths of the design as well as areas that needed further improvement. Overall, this paper provides guidelines that will assist other researchers to develop an ergonomic user interface for a fully autonomous agricultural machine.