Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman...Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.展开更多
AIM:To assess glaucoma patient satisfaction and follow-up adherence in case management and identify associated predictors to improve healthcare quality and patient outcomes.METHODS:In this cross-sectional study,a tota...AIM:To assess glaucoma patient satisfaction and follow-up adherence in case management and identify associated predictors to improve healthcare quality and patient outcomes.METHODS:In this cross-sectional study,a total of 119 patients completed a Patient Satisfaction Questionnaire-18 and a sociodemographic questionnaire.Clinical data was obtained from the case management system.Follow-up adherence was defined as completing each follow-up within±30d of the scheduled time set by ophthalmologists during the study period.RESULTS:Average satisfaction scored 78.65±7,with an average of 4.39±0.58 across the seven dimensions.Age negatively correlated with satisfaction(P=0.008),whilst patients with follow-up duration of 2 or more years reported higher satisfaction(P=0.045).Multivariate logistics regression analysis revealed that longer follow-up durations were associated with lower follow-up adherence(OR=0.97,95%CI,0.95-1.00,P=0.044).Additionally,patients with suspected glaucoma(OR=2.72,95%CI,1.03-7.20,P=0.044)and those with an annual income over 100000 Chinese yuan demonstrated higher adherence(OR=5.57,95%CI,1.00-30.89,P=0.049).CONCLUSION:The case management model proves effective for glaucoma patients,with positive adherence rates.The implementation of this model can be optimized in the future based on the identified factors and extended to glaucoma patients in more hospitals.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integ...With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.展开更多
BACKGROUND Regarding the incidence of malignant tumors in China,the incidence of liver cancer ranks fourth,second only to lung,gastric,and esophageal cancers.The case fatality rate ranks third after lung and cervical ...BACKGROUND Regarding the incidence of malignant tumors in China,the incidence of liver cancer ranks fourth,second only to lung,gastric,and esophageal cancers.The case fatality rate ranks third after lung and cervical cancer.In a previous study,the whole-process management model was applied to patients with breast cancer,which effectively reduced their negative emotions and improved treatment adherence and nursing satisfaction.METHODS In this single-center,randomized,controlled study,60 randomly selected patients with liver cancer who had been admitted to our hospital from January 2021 to January 2022 were randomly divided into an observation group(n=30),who received whole-process case management on the basis of routine nursing mea-sures,and a control group(n=30),who were given routine nursing measures.We compared differences between the two groups in terms of anxiety,depression,the level of hope,self-care ability,symptom distress,sleep quality,and quality of life.RESULTS Post-intervention,Hamilton anxiety scale,Hamilton depression scale,memory symptom assessment scale,and Pittsburgh sleep quality index scores in both groups were lower than those pre-intervention,and the observation group had lower scores than the control group(P<0.05).Herth hope index,self-care ability assessment scale-revision in Chinese,and quality of life measurement scale for patients with liver cancer scores in both groups were higher than those pre-intervention,with higher scores in the observation group compared with the control group(P<0.05).CONCLUSION Whole-process case management can effectively reduce anxiety and depression in patients with liver cancer,alleviate symptoms and problems,and improve the level of hope,self-care ability,sleep quality,and quality of life,as well as provide feasible nursing alternatives for patients with liver cancer.展开更多
BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been publishe...BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly.展开更多
In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and ot...In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and other relevant factors in practical situations, this article proposes a non-entangled quantum blind signature scheme based on dense encoding. The information owner utilizes dense encoding and hash functions to blind the information while reducing the use of quantum resources. After receiving particles, the signer encrypts the message using a one-way function and performs a Hadamard gate operation on the selected single photon to generate the signature. Then the verifier performs a Hadamard gate inverse operation on the signature and combines it with the encoding rules to restore the message and complete the verification.Compared with some typical quantum blind signature protocols, this protocol has strong blindness in privacy protection,and higher flexibility in scalability and application. The signer can adjust the signature operation according to the actual situation, which greatly simplifies the complexity of the signature. By simultaneously utilizing the secondary distribution and rearrangement of non-entangled quantum states, a non-entangled quantum state representation of three bits of classical information is achieved, reducing the use of a large amount of quantum resources and lowering implementation costs. This improves both signature verification efficiency and communication efficiency while, at the same time, this scheme meets the requirements of unforgeability, non-repudiation, and prevention of information leakage.展开更多
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall...With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating r...Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating room management was adopted from July 2019 to June 2020,and specialized group management was adopted from July 2020 to June 2021.The surgeon’s satisfaction,surgical nurses’core professional competence,and surgical patients’satisfaction were obtained through surveys and the results were analyzed.Results:Surgeon satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Besides,surgical nurses’core professional competency scores before the implementation of specialized group management were significantly lower than after its implementation(P<0.05).Lastly,surgical patients’satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Conclusion:Specialized group management helps to improve the quality of perioperative care and should be applied in clinical practice.展开更多
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec...Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
In 2009,the World Health Organization included snakebite on the list of neglected tropical diseases,acknowledging it as a common occupational hazard for farmers,plantation workers,and others,causing tens of thousands ...In 2009,the World Health Organization included snakebite on the list of neglected tropical diseases,acknowledging it as a common occupational hazard for farmers,plantation workers,and others,causing tens of thousands of deaths and chronic physical disabilities every year.This guideline aims to provide practical information to help clinical professionals evaluate and treat snakebite victims.These recommendations are based on clinical experience and clinical research evidence.This guideline focuses on the following topics:snake venom,clinical manifestations,auxiliary examination,diagnosis,treatments,and prevention.展开更多
Background: Venous thromboembolism (VTE) is a major public health problem due to its increasing frequency, mortality and management cost. This cost may require major financial efforts from patients, especially in deve...Background: Venous thromboembolism (VTE) is a major public health problem due to its increasing frequency, mortality and management cost. This cost may require major financial efforts from patients, especially in developing countries like ours where less than 7% of the population has health insurance. This study aimed to estimate the direct cost of managing VTE in three reference hospitals in Yaoundé. Methods: This was a cross-sectional retrospective study over a three-year period (from January 1st 2018 to December 31 2020) carried out in the Cardiology departments of the Central and General Hospitals, and the Emergency Centre of the city of Yaoundé. All patients managed during the study period for deep vein thrombosis and pulmonary embolism confirmed by venous ultrasound coupled with Doppler and computed tomography pulmonary angiography respectively were included. For each patient, we collected sociodemographic and clinical data as well as data on the cost of consultation, hospital stay, workups and medications. These data were analysed using SPSS version 23.0. Results: A total of 92 patient’s records were analysed. The median age was 60 years [48 - 68] with a sex ratio of 0.53. The median direct cost of management of venous thromboembolism was 766,375 CFAF [536,455 - 1,029,745] or $1415 USD. Management of pulmonary embolism associated with deep vein thrombosis was more costly than isolated pulmonary embolism or deep vein thrombosis. Factors influencing the direct cost of management of venous thromboembolism were: hospital structure (p = 0.015), health insurance (p 0.001), type of pulmonary embolism (p = 0.021), and length of hospital stay (p = 0.001). Conclusion: Management of VTE is a major financial burden for our patients and this burden is influenced by the hospital structure, health insurance, type of pulmonary embolism and length of hospital stay.展开更多
BACKGROUND The emergency department(ED)plays a critical role in establishing artificial airways and implementing mechanical ventilation.Managing airbags in the ED presents a prime opportunity to mitigate the risk of v...BACKGROUND The emergency department(ED)plays a critical role in establishing artificial airways and implementing mechanical ventilation.Managing airbags in the ED presents a prime opportunity to mitigate the risk of ventilator-associated pneumonia.Nonetheless,existing research has largely overlooked the understanding,beliefs,and practical dimensions of airway airbag management among ED nurses,with a predominant focus on intensive care unit nurses.AIM To investigate the current status of ED nurses'knowledge,beliefs,and practical behaviors in airway airbag management and their influencing factors.METHODS A survey was conducted from July 10th to August 10th,2023,using convenience sampling on 520 ED nurses from 15 tertiary hospitals and 5 sary hospitals in Shanghai.Pathway analysis was utilized to analyze the influencing factors.RESULTS The scores for ED nurses'airway airbag management knowledge were 60.26±23.00,belief was 88.65±13.36,and behavior was 75.10±19.84.The main influencing factors of airbag management knowledge included participation in specialized nurse or mechanical ventilation training,department,and work experience in the department.Influencing factors of airbag management belief comprised knowledge,department,and participation in specialized nurse or mechanical ventilation training.Primary influencing factors of airbag management behavior included knowledge,belief,department,participation in specialized nurse or mechanical ventilation training,and professional title.The belief in airbag management among ED nurses acted as a partial mediator between knowledge and behavior,with a total effect value of 0.513,and an indirect effect of 0.085,constituting 16.6%of the total effect.CONCLUSION ED nurses exhibit a positive attitude toward airbag management with relatively standardized practices,yet there remains room for improvement in their knowledge levels.Nursing managers should implement interventions tailored to the characteristics of ED nurses'airbag management knowledge,beliefs,and practices to enhance their airbag management proficiency.展开更多
Crowdsourcing holds broad applications in information acquisition and dissemination,yet encounters challenges pertaining to data quality assessment and user reputation management.Reputation mechanisms stand as crucial...Crowdsourcing holds broad applications in information acquisition and dissemination,yet encounters challenges pertaining to data quality assessment and user reputation management.Reputation mechanisms stand as crucial solutions for appraising and updating participant reputation scores,thereby elevating the quality and dependability of crowdsourced data.However,these mechanisms face several challenges in traditional crowdsourcing systems:1)platform security lacks robust guarantees and may be susceptible to attacks;2)there exists a potential for large-scale privacy breaches;and 3)incentive mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task demander evaluations,occasionally lacking a dedicated reputation update module.This paper introduces a reputation update scheme tailored for crowdsourcing,with a focus on proficiently overseeing participant reputations and alleviating the impact of malicious activities on the sensing system.Here,the reputation update scheme is determined by an Empirical Cumulative distribution-based Outlier Detection method(ECOD).Our scheme embraces a blockchain-based crowdsourcing framework utilizing a homomorphic encryption method to ensure data transparency and tamper-resistance.Computation of user reputation scores relies on their behavioral history,actively discouraging undesirable conduct.Additionally,we introduce a dynamic weight incentive mechanism that mirrors alterations in participant reputation,enabling the system to allocate incentives based on user behavior and reputation.Our scheme undergoes evaluation on 11 datasets,revealing substantial enhancements in data credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.This research not only presents a practical solution for crowdsourcing reputation management but also offers valuable insights for future research and applications,holding promise for fostering more reliable and high-quality data collection in crowdsourcing across diverse domains.展开更多
The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir...The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.展开更多
基金This research was funded by the Natural Science Foundation of Hebei Province(F2021506004).
文摘Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.
基金Supported by the Key Innovation and Guidance Program of the Eye Hospital,School of Ophthalmology&Optometry,Wenzhou Medical University(No.YNZD2201903)the Scientific Research Foundation of the Eye Hospital,School of Ophthalmology&Optometry,Wenzhou Medical University(No.KYQD20180306)the Nursing Project of the Eye Hospital of Wenzhou Medical University(No.YNHL2201908).
文摘AIM:To assess glaucoma patient satisfaction and follow-up adherence in case management and identify associated predictors to improve healthcare quality and patient outcomes.METHODS:In this cross-sectional study,a total of 119 patients completed a Patient Satisfaction Questionnaire-18 and a sociodemographic questionnaire.Clinical data was obtained from the case management system.Follow-up adherence was defined as completing each follow-up within±30d of the scheduled time set by ophthalmologists during the study period.RESULTS:Average satisfaction scored 78.65±7,with an average of 4.39±0.58 across the seven dimensions.Age negatively correlated with satisfaction(P=0.008),whilst patients with follow-up duration of 2 or more years reported higher satisfaction(P=0.045).Multivariate logistics regression analysis revealed that longer follow-up durations were associated with lower follow-up adherence(OR=0.97,95%CI,0.95-1.00,P=0.044).Additionally,patients with suspected glaucoma(OR=2.72,95%CI,1.03-7.20,P=0.044)and those with an annual income over 100000 Chinese yuan demonstrated higher adherence(OR=5.57,95%CI,1.00-30.89,P=0.049).CONCLUSION:The case management model proves effective for glaucoma patients,with positive adherence rates.The implementation of this model can be optimized in the future based on the identified factors and extended to glaucoma patients in more hospitals.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported in part by the National Key R&D Program of China(2020YFB1806103)the National Natural Science Foundation of China under Grant 62225103 and U22B2003+1 种基金Beijing Natural Science Foundation(L212004)China University Industry-University-Research Collaborative Innovation Fund(2021FNA05001).
文摘With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.
基金This study protocol was approved by the General Hospital of the Yangtze River Shipping,and all the families have voluntarily participated in the study and have signed informed consent forms.
文摘BACKGROUND Regarding the incidence of malignant tumors in China,the incidence of liver cancer ranks fourth,second only to lung,gastric,and esophageal cancers.The case fatality rate ranks third after lung and cervical cancer.In a previous study,the whole-process management model was applied to patients with breast cancer,which effectively reduced their negative emotions and improved treatment adherence and nursing satisfaction.METHODS In this single-center,randomized,controlled study,60 randomly selected patients with liver cancer who had been admitted to our hospital from January 2021 to January 2022 were randomly divided into an observation group(n=30),who received whole-process case management on the basis of routine nursing mea-sures,and a control group(n=30),who were given routine nursing measures.We compared differences between the two groups in terms of anxiety,depression,the level of hope,self-care ability,symptom distress,sleep quality,and quality of life.RESULTS Post-intervention,Hamilton anxiety scale,Hamilton depression scale,memory symptom assessment scale,and Pittsburgh sleep quality index scores in both groups were lower than those pre-intervention,and the observation group had lower scores than the control group(P<0.05).Herth hope index,self-care ability assessment scale-revision in Chinese,and quality of life measurement scale for patients with liver cancer scores in both groups were higher than those pre-intervention,with higher scores in the observation group compared with the control group(P<0.05).CONCLUSION Whole-process case management can effectively reduce anxiety and depression in patients with liver cancer,alleviate symptoms and problems,and improve the level of hope,self-care ability,sleep quality,and quality of life,as well as provide feasible nursing alternatives for patients with liver cancer.
文摘BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61762039)。
文摘In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and other relevant factors in practical situations, this article proposes a non-entangled quantum blind signature scheme based on dense encoding. The information owner utilizes dense encoding and hash functions to blind the information while reducing the use of quantum resources. After receiving particles, the signer encrypts the message using a one-way function and performs a Hadamard gate operation on the selected single photon to generate the signature. Then the verifier performs a Hadamard gate inverse operation on the signature and combines it with the encoding rules to restore the message and complete the verification.Compared with some typical quantum blind signature protocols, this protocol has strong blindness in privacy protection,and higher flexibility in scalability and application. The signer can adjust the signature operation according to the actual situation, which greatly simplifies the complexity of the signature. By simultaneously utilizing the secondary distribution and rearrangement of non-entangled quantum states, a non-entangled quantum state representation of three bits of classical information is achieved, reducing the use of a large amount of quantum resources and lowering implementation costs. This improves both signature verification efficiency and communication efficiency while, at the same time, this scheme meets the requirements of unforgeability, non-repudiation, and prevention of information leakage.
基金supported by the National Natural Science Foundation of China(61971007&61571013).
文摘With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
基金Hebei University Affiliated Hospital Youth Fund Scientific Research Project Project Number:2019Q017。
文摘Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating room management was adopted from July 2019 to June 2020,and specialized group management was adopted from July 2020 to June 2021.The surgeon’s satisfaction,surgical nurses’core professional competence,and surgical patients’satisfaction were obtained through surveys and the results were analyzed.Results:Surgeon satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Besides,surgical nurses’core professional competency scores before the implementation of specialized group management were significantly lower than after its implementation(P<0.05).Lastly,surgical patients’satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Conclusion:Specialized group management helps to improve the quality of perioperative care and should be applied in clinical practice.
基金the National Natural Science Foundation of China under Grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2022JJ50318 and 2022JJ30621Scientific Research Fund of Hunan Provincial Education Department of China under Grant 22A0200 and 20K098。
文摘Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金supported by the National Science Foundation of China(82160647)Hainan Clinical Medical Research Center Project(LCYX202310)+1 种基金Hainan Provincial Major Science and Technology Projects(ZDKJ202004)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-023).
文摘In 2009,the World Health Organization included snakebite on the list of neglected tropical diseases,acknowledging it as a common occupational hazard for farmers,plantation workers,and others,causing tens of thousands of deaths and chronic physical disabilities every year.This guideline aims to provide practical information to help clinical professionals evaluate and treat snakebite victims.These recommendations are based on clinical experience and clinical research evidence.This guideline focuses on the following topics:snake venom,clinical manifestations,auxiliary examination,diagnosis,treatments,and prevention.
文摘Background: Venous thromboembolism (VTE) is a major public health problem due to its increasing frequency, mortality and management cost. This cost may require major financial efforts from patients, especially in developing countries like ours where less than 7% of the population has health insurance. This study aimed to estimate the direct cost of managing VTE in three reference hospitals in Yaoundé. Methods: This was a cross-sectional retrospective study over a three-year period (from January 1st 2018 to December 31 2020) carried out in the Cardiology departments of the Central and General Hospitals, and the Emergency Centre of the city of Yaoundé. All patients managed during the study period for deep vein thrombosis and pulmonary embolism confirmed by venous ultrasound coupled with Doppler and computed tomography pulmonary angiography respectively were included. For each patient, we collected sociodemographic and clinical data as well as data on the cost of consultation, hospital stay, workups and medications. These data were analysed using SPSS version 23.0. Results: A total of 92 patient’s records were analysed. The median age was 60 years [48 - 68] with a sex ratio of 0.53. The median direct cost of management of venous thromboembolism was 766,375 CFAF [536,455 - 1,029,745] or $1415 USD. Management of pulmonary embolism associated with deep vein thrombosis was more costly than isolated pulmonary embolism or deep vein thrombosis. Factors influencing the direct cost of management of venous thromboembolism were: hospital structure (p = 0.015), health insurance (p 0.001), type of pulmonary embolism (p = 0.021), and length of hospital stay (p = 0.001). Conclusion: Management of VTE is a major financial burden for our patients and this burden is influenced by the hospital structure, health insurance, type of pulmonary embolism and length of hospital stay.
文摘BACKGROUND The emergency department(ED)plays a critical role in establishing artificial airways and implementing mechanical ventilation.Managing airbags in the ED presents a prime opportunity to mitigate the risk of ventilator-associated pneumonia.Nonetheless,existing research has largely overlooked the understanding,beliefs,and practical dimensions of airway airbag management among ED nurses,with a predominant focus on intensive care unit nurses.AIM To investigate the current status of ED nurses'knowledge,beliefs,and practical behaviors in airway airbag management and their influencing factors.METHODS A survey was conducted from July 10th to August 10th,2023,using convenience sampling on 520 ED nurses from 15 tertiary hospitals and 5 sary hospitals in Shanghai.Pathway analysis was utilized to analyze the influencing factors.RESULTS The scores for ED nurses'airway airbag management knowledge were 60.26±23.00,belief was 88.65±13.36,and behavior was 75.10±19.84.The main influencing factors of airbag management knowledge included participation in specialized nurse or mechanical ventilation training,department,and work experience in the department.Influencing factors of airbag management belief comprised knowledge,department,and participation in specialized nurse or mechanical ventilation training.Primary influencing factors of airbag management behavior included knowledge,belief,department,participation in specialized nurse or mechanical ventilation training,and professional title.The belief in airbag management among ED nurses acted as a partial mediator between knowledge and behavior,with a total effect value of 0.513,and an indirect effect of 0.085,constituting 16.6%of the total effect.CONCLUSION ED nurses exhibit a positive attitude toward airbag management with relatively standardized practices,yet there remains room for improvement in their knowledge levels.Nursing managers should implement interventions tailored to the characteristics of ED nurses'airbag management knowledge,beliefs,and practices to enhance their airbag management proficiency.
基金This work is supported by National Natural Science Foundation of China(Nos.U21A20463,62172117,61802383)Research Project of Pazhou Lab for Excellent Young Scholars(No.PZL2021KF0024)Guangzhou Basic and Applied Basic Research Foundation(Nos.202201010330,202201020162,202201020221).
文摘Crowdsourcing holds broad applications in information acquisition and dissemination,yet encounters challenges pertaining to data quality assessment and user reputation management.Reputation mechanisms stand as crucial solutions for appraising and updating participant reputation scores,thereby elevating the quality and dependability of crowdsourced data.However,these mechanisms face several challenges in traditional crowdsourcing systems:1)platform security lacks robust guarantees and may be susceptible to attacks;2)there exists a potential for large-scale privacy breaches;and 3)incentive mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task demander evaluations,occasionally lacking a dedicated reputation update module.This paper introduces a reputation update scheme tailored for crowdsourcing,with a focus on proficiently overseeing participant reputations and alleviating the impact of malicious activities on the sensing system.Here,the reputation update scheme is determined by an Empirical Cumulative distribution-based Outlier Detection method(ECOD).Our scheme embraces a blockchain-based crowdsourcing framework utilizing a homomorphic encryption method to ensure data transparency and tamper-resistance.Computation of user reputation scores relies on their behavioral history,actively discouraging undesirable conduct.Additionally,we introduce a dynamic weight incentive mechanism that mirrors alterations in participant reputation,enabling the system to allocate incentives based on user behavior and reputation.Our scheme undergoes evaluation on 11 datasets,revealing substantial enhancements in data credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.This research not only presents a practical solution for crowdsourcing reputation management but also offers valuable insights for future research and applications,holding promise for fostering more reliable and high-quality data collection in crowdsourcing across diverse domains.
基金supported by NSFC project(grant No.61971359)Chongqing Municipal Key Laboratory of Institutions of Higher Education(grant No.cquptmct-202104)+1 种基金Fundamental Research Funds for the Central Universities,Sichuan Science and Technology Project(grant no.2021YFQ0053)State Key Laboratory of Rail Transit Engineering Informatization(FSDI).
文摘The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.