Our case study analyzed the proximity of previously mapped fractures in the aquifer matrix to 93 Florida panther (Puma concolor coryi) dens mapped from 2007-2016 in south Florida. Dens occurred in five counties (Colli...Our case study analyzed the proximity of previously mapped fractures in the aquifer matrix to 93 Florida panther (Puma concolor coryi) dens mapped from 2007-2016 in south Florida. Dens occurred in five counties (Collier = 77, Dade = 1, Hendry = 9, Lee = 5, and Monroe = 1) and three sub-basins of the Greater Everglades Basin (Big Cypress Swamp = 83, Caloosahatchee = 3, and Everglades = 7). Fractured aquifers occur worldwide, but are not the focus of habitat suitability studies, despite evidence that fractures influence plant species composition and density. Habitat alterations can occur many kilometers from the surface footprint of groundwater alterations in the regional Floridan aquifer system via preferential flow through fractures. Increased natural discharge from and recharge to the aquifer occur at fracture intersections. Greater induced recharge and habitat changes also may occur at fracture intersections. All dens were within 5 km of a previously mapped fracture;36% and 74% were within 1 km and 2 km, respectively, of those fractures;and 47%, 74%, and 90% of dens were within 2 km, 3.25 km and 5 km, respectively, from the nearest fracture intersection. Results suggest fractures influence the suitability and/or availability of habitat for panther dens, selection of den sites, and availability as well as abundance of high quality prey items essential for the nutritional demands of successfully rearing panther kittens in the wild. We recommend more detailed investigations of: a) vegetation characteristics near dens, b) groundwater alterations and cumulative impacts of those alterations associated with fractures in panther habitat (e.g., altered plant species composition and density), and c) influence of aquifer fractures in all habitats underlain by fractures.展开更多
The primary objective of this paper was to identify flood-prone areas in Southeast of Louisiana to help decision-makers to develop appropriate adaptation strategies and flood prediction, and mitigation of the effects ...The primary objective of this paper was to identify flood-prone areas in Southeast of Louisiana to help decision-makers to develop appropriate adaptation strategies and flood prediction, and mitigation of the effects on the community. In doing so, the paper uses satellite remote sensing and Geographic Information System (GIS) data for this purpose. Elevation data was obtained from the National Elevation Dataset (NED) produced by the United States Geological Survey (USGS) seamless data warehouse. Satellite data was also acquired from USGS Earth explorer website. Topographical information on runoff characteristics such as slope, aspect and the digital elevation model was generated. Grid interpolation TIN (triangulated irregular network) was carried from the digital elevation model (DEM) to create slope map. Image Drape was performed using ERDAS IMAGINE Virtual GIS. The output image was then draped over the NED elevation data for visualization purposes with vertical exaggeration of 16 feet. Results of the study revealed that majority of the study area lies in low-lying and very low-lying terrain below sea level. Policy recommendation in the form of the need to design and build a comprehensive Regional Information Systems (RIS) in the form of periodic inventorying, monitoring and evaluation with full support of the governments was made for the study area.展开更多
Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most re...Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most relevant to predicting soil properties at the catchment scale in semi-arid areas. Thus, this research aims to investigate the ability of multivariate statistical analyses to distinguish which soil properties follow a clear spatial pattern conditioned by specific environmental characteristics in a semi-arid region of Iran. To achieve this goal, we digitized parent materials and landforms by recent orthophotography. Also, we extracted ten topographical attributes and five remote sensing variables from a digital elevation model(DEM) and the Landsat Enhanced Thematic Mapper(ETM), respectively. These factors were contrasted for 334 soil samples(depth of 0–30 cm). Cluster analysis and soil maps reveal that Cluster 1 comprises of limestones, massive limestones and mixed deposits of conglomerates with low soil organic carbon(SOC) and clay contents, and Cluster 2 is composed of soils that originated from quaternary and early quaternary parent materials such as terraces, alluvial fans, lake deposits, and marls or conglomerates that register the highest SOC content and the lowest sand and silt contents. Further, it is confirmed that soils with the highest SOC and clay contents are located in wetlands, lagoons, alluvial fans and piedmonts, while soils with the lowest SOC and clay contents are located in dissected alluvial fans, eroded hills, rock outcrops and steep hills. The results of principal component analysis using the remote sensing data and topographical attributes identify five main components, which explain 73.3% of the total variability of soil properties. Environmental factors such as hillslope morphology and all of the remote sensing variables can largely explain SOC variability, but no significant correlation is found for soil texture and calcium carbonate equivalent contents. Therefore, we conclude that SOC can be considered as the best-predicted soil property in semi-arid regions.展开更多
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dens...Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002) Keywords World Trade Center (WTC) - terrorism - emergency response - emergency management - ground zero - remote sensing - emergency operations - disasters - geographic information systems (GIS) - satellite imagery - synthetic aperture radar (SAR) - light detection and ranging imagery (LIDAR)展开更多
Solid waste management is a worldwide concern, particularly in the developing countries. The solid waste disposal and landfill site management is a serious issue. City planners and municipal corporations have to confr...Solid waste management is a worldwide concern, particularly in the developing countries. The solid waste disposal and landfill site management is a serious issue. City planners and municipal corporations have to confront with the problem of Municipal Solid Waste Management all over the world, especially in the developing countries. Population growth is responsible for an increase in residential, commercial and infrastructure development, which poses adverse effects on the environment. One of the most serious and challenging environmental challenge being faced by the municipal corporations of developing countries is urban solid waste management. Dumping of municipal waste in unsuitable areas poses serious challenges to the local habitants of the neighborhood. Municipal solid waste, if not properly managed, is one of the major environmental issues that could further lead to different diseases’ transmission, aesthetic and odor nuisance, and atmospheric and water pollution, etc. This paper aims to deal with the selection of suitable site for disposing off municipal solid waste management being produced at the Jacobabad City using Geographic Information Systems and Remote Sensing techniques. In the Jacobabad City, the existing open dumping systems are not environmentally sound posing serious environmental threats. Loads of generated waste (about 64 tons/day as per 2012 estimates) has been dumped into the inappropriate sites. Keeping in view the complicated process of landfill site, this study considers all the environmental, social and technical factors (distances from residences, proximity to road networks, schools, health facilities and reservoirs) to determine the best site for Municipal Solid Waste disposal in Jacobabad City. Different analysis like buffer analysis, Euclidean distance and overlay analysis were also performed in this study to come up with the most suitable landfill site.展开更多
The development of spatial decision support for environmental resource management,e.g.forest and agroecosystem management,biodiversity conservation,or hydrological planning,started in the 1980s and was the focus of ma...The development of spatial decision support for environmental resource management,e.g.forest and agroecosystem management,biodiversity conservation,or hydrological planning,started in the 1980s and was the focus of many research groups in the 1990s.The combined availability of spatial data and communication,computing,positioning,geographic information system(GIS)-and remote sensing(RS)-technologies has been responsible for the implementation of complex SDSS since the late 1990s.The regional GIS-based modelling of environmental resources,and therefore ecosystems in general,requires setting-up an extensive geo and model database.Spatial data on topography,soil,climate,land use,hydrology,flora,fauna and anthropogenic activities have to be available.Therefore,GIS-and RS-technologies are of central importance for spatial data handling and analysis.In this context,the structure of spatial environmental information systems(SEIS)is introduced.In SEIS,the input data for environmental resource management are organised in at least seven subinformation systems:base geodata information system(BGDIS),climate information system(CIS),soil information system(SIS),land use information system(LUIS),hydrological information system(HIS),spatial/temporal biodiversity information system(STBIS),forest/agricultural management information system(FAMIS).The major tasks of a SEIS are to(i)provide environmental resource information on a regional level,(ii)analyse the impact of anthropogenic activities and(iii)simulate scenarios of different impacts.展开更多
随着农作物遥感业务的不断延伸和农业生产管理对遥感监测需求的不断提高,业务运行管理效率问题日益凸显。该文通过对农作物遥感监测业务管理流程进行了系统化梳理与调整,设计开发了"农作物遥感业务管理系统"。该系统利用地理...随着农作物遥感业务的不断延伸和农业生产管理对遥感监测需求的不断提高,业务运行管理效率问题日益凸显。该文通过对农作物遥感监测业务管理流程进行了系统化梳理与调整,设计开发了"农作物遥感业务管理系统"。该系统利用地理信息系统(geographic information system,GIS)、数据库技术和网络技术,科学设计了数据库系统,提升了业务系统承载能力;实现农作物遥感业务工作影像数据入库管理、查询、任务分发、上报、审核、归档的完整业务流程;建立业务跟踪管理机制,实现作物监测业务的流程化和可视化,有效提高了运行管理效率。展开更多
文摘Our case study analyzed the proximity of previously mapped fractures in the aquifer matrix to 93 Florida panther (Puma concolor coryi) dens mapped from 2007-2016 in south Florida. Dens occurred in five counties (Collier = 77, Dade = 1, Hendry = 9, Lee = 5, and Monroe = 1) and three sub-basins of the Greater Everglades Basin (Big Cypress Swamp = 83, Caloosahatchee = 3, and Everglades = 7). Fractured aquifers occur worldwide, but are not the focus of habitat suitability studies, despite evidence that fractures influence plant species composition and density. Habitat alterations can occur many kilometers from the surface footprint of groundwater alterations in the regional Floridan aquifer system via preferential flow through fractures. Increased natural discharge from and recharge to the aquifer occur at fracture intersections. Greater induced recharge and habitat changes also may occur at fracture intersections. All dens were within 5 km of a previously mapped fracture;36% and 74% were within 1 km and 2 km, respectively, of those fractures;and 47%, 74%, and 90% of dens were within 2 km, 3.25 km and 5 km, respectively, from the nearest fracture intersection. Results suggest fractures influence the suitability and/or availability of habitat for panther dens, selection of den sites, and availability as well as abundance of high quality prey items essential for the nutritional demands of successfully rearing panther kittens in the wild. We recommend more detailed investigations of: a) vegetation characteristics near dens, b) groundwater alterations and cumulative impacts of those alterations associated with fractures in panther habitat (e.g., altered plant species composition and density), and c) influence of aquifer fractures in all habitats underlain by fractures.
文摘The primary objective of this paper was to identify flood-prone areas in Southeast of Louisiana to help decision-makers to develop appropriate adaptation strategies and flood prediction, and mitigation of the effects on the community. In doing so, the paper uses satellite remote sensing and Geographic Information System (GIS) data for this purpose. Elevation data was obtained from the National Elevation Dataset (NED) produced by the United States Geological Survey (USGS) seamless data warehouse. Satellite data was also acquired from USGS Earth explorer website. Topographical information on runoff characteristics such as slope, aspect and the digital elevation model was generated. Grid interpolation TIN (triangulated irregular network) was carried from the digital elevation model (DEM) to create slope map. Image Drape was performed using ERDAS IMAGINE Virtual GIS. The output image was then draped over the NED elevation data for visualization purposes with vertical exaggeration of 16 feet. Results of the study revealed that majority of the study area lies in low-lying and very low-lying terrain below sea level. Policy recommendation in the form of the need to design and build a comprehensive Regional Information Systems (RIS) in the form of periodic inventorying, monitoring and evaluation with full support of the governments was made for the study area.
基金financial support of Isfahan University of Technology (IUT) for this research
文摘Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most relevant to predicting soil properties at the catchment scale in semi-arid areas. Thus, this research aims to investigate the ability of multivariate statistical analyses to distinguish which soil properties follow a clear spatial pattern conditioned by specific environmental characteristics in a semi-arid region of Iran. To achieve this goal, we digitized parent materials and landforms by recent orthophotography. Also, we extracted ten topographical attributes and five remote sensing variables from a digital elevation model(DEM) and the Landsat Enhanced Thematic Mapper(ETM), respectively. These factors were contrasted for 334 soil samples(depth of 0–30 cm). Cluster analysis and soil maps reveal that Cluster 1 comprises of limestones, massive limestones and mixed deposits of conglomerates with low soil organic carbon(SOC) and clay contents, and Cluster 2 is composed of soils that originated from quaternary and early quaternary parent materials such as terraces, alluvial fans, lake deposits, and marls or conglomerates that register the highest SOC content and the lowest sand and silt contents. Further, it is confirmed that soils with the highest SOC and clay contents are located in wetlands, lagoons, alluvial fans and piedmonts, while soils with the lowest SOC and clay contents are located in dissected alluvial fans, eroded hills, rock outcrops and steep hills. The results of principal component analysis using the remote sensing data and topographical attributes identify five main components, which explain 73.3% of the total variability of soil properties. Environmental factors such as hillslope morphology and all of the remote sensing variables can largely explain SOC variability, but no significant correlation is found for soil texture and calcium carbonate equivalent contents. Therefore, we conclude that SOC can be considered as the best-predicted soil property in semi-arid regions.
基金the Earthquake Engineering Research Centers Program of the National Science Foundation(NSF) under a Supplement to Award Number ECC-9701471 to the Multidisciplinary Center for Earthquake Engineering Research
文摘Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002) Keywords World Trade Center (WTC) - terrorism - emergency response - emergency management - ground zero - remote sensing - emergency operations - disasters - geographic information systems (GIS) - satellite imagery - synthetic aperture radar (SAR) - light detection and ranging imagery (LIDAR)
文摘Solid waste management is a worldwide concern, particularly in the developing countries. The solid waste disposal and landfill site management is a serious issue. City planners and municipal corporations have to confront with the problem of Municipal Solid Waste Management all over the world, especially in the developing countries. Population growth is responsible for an increase in residential, commercial and infrastructure development, which poses adverse effects on the environment. One of the most serious and challenging environmental challenge being faced by the municipal corporations of developing countries is urban solid waste management. Dumping of municipal waste in unsuitable areas poses serious challenges to the local habitants of the neighborhood. Municipal solid waste, if not properly managed, is one of the major environmental issues that could further lead to different diseases’ transmission, aesthetic and odor nuisance, and atmospheric and water pollution, etc. This paper aims to deal with the selection of suitable site for disposing off municipal solid waste management being produced at the Jacobabad City using Geographic Information Systems and Remote Sensing techniques. In the Jacobabad City, the existing open dumping systems are not environmentally sound posing serious environmental threats. Loads of generated waste (about 64 tons/day as per 2012 estimates) has been dumped into the inappropriate sites. Keeping in view the complicated process of landfill site, this study considers all the environmental, social and technical factors (distances from residences, proximity to road networks, schools, health facilities and reservoirs) to determine the best site for Municipal Solid Waste disposal in Jacobabad City. Different analysis like buffer analysis, Euclidean distance and overlay analysis were also performed in this study to come up with the most suitable landfill site.
文摘The development of spatial decision support for environmental resource management,e.g.forest and agroecosystem management,biodiversity conservation,or hydrological planning,started in the 1980s and was the focus of many research groups in the 1990s.The combined availability of spatial data and communication,computing,positioning,geographic information system(GIS)-and remote sensing(RS)-technologies has been responsible for the implementation of complex SDSS since the late 1990s.The regional GIS-based modelling of environmental resources,and therefore ecosystems in general,requires setting-up an extensive geo and model database.Spatial data on topography,soil,climate,land use,hydrology,flora,fauna and anthropogenic activities have to be available.Therefore,GIS-and RS-technologies are of central importance for spatial data handling and analysis.In this context,the structure of spatial environmental information systems(SEIS)is introduced.In SEIS,the input data for environmental resource management are organised in at least seven subinformation systems:base geodata information system(BGDIS),climate information system(CIS),soil information system(SIS),land use information system(LUIS),hydrological information system(HIS),spatial/temporal biodiversity information system(STBIS),forest/agricultural management information system(FAMIS).The major tasks of a SEIS are to(i)provide environmental resource information on a regional level,(ii)analyse the impact of anthropogenic activities and(iii)simulate scenarios of different impacts.
文摘随着农作物遥感业务的不断延伸和农业生产管理对遥感监测需求的不断提高,业务运行管理效率问题日益凸显。该文通过对农作物遥感监测业务管理流程进行了系统化梳理与调整,设计开发了"农作物遥感业务管理系统"。该系统利用地理信息系统(geographic information system,GIS)、数据库技术和网络技术,科学设计了数据库系统,提升了业务系统承载能力;实现农作物遥感业务工作影像数据入库管理、查询、任务分发、上报、审核、归档的完整业务流程;建立业务跟踪管理机制,实现作物监测业务的流程化和可视化,有效提高了运行管理效率。