期刊文献+
共找到2,091篇文章
< 1 2 105 >
每页显示 20 50 100
Effects of the fertilizer and water management on amino acids and volatile components in Cabernet Sauvignon grapes and wines
1
作者 Kui Zhang Wenhuai Kang +3 位作者 Weihua Han Haijun Ma Daozhi Gong Ling Qin 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第1期69-79,共11页
The amino acids and the volatile substances in grapes and wines play important roles in their quality,and the concentrations of these substances can be changed by how a vineyard is managed,e.g.,irrigation and fertigat... The amino acids and the volatile substances in grapes and wines play important roles in their quality,and the concentrations of these substances can be changed by how a vineyard is managed,e.g.,irrigation and fertigation regimes.This study aimed to evaluate the effect of fertilizer and water management on the distribution of amino acids,the volatile component profiles,and the sensory characteristics of Cabernet Sauvignon grapes and wines.The results showed that the amino acid concentration in grape berries was the highest under the 100%local fertilizer rate(HF)and 100%water irrigation quota(HW)treatment,and the volatile component concentration in wine was the highest under HF and 80%water irrigation quota(MW)treatment.The effect of irrigation on the amino acid content in grapes was greater than that of fertigation.The synergistic effect of fertilizer and water on arginine,serine,and glutamine in grape berries was significant.The interactive effect of fertigation and irrigation on the volatile substance in grapes was greater than that of fertigation and irrigation alone.The influence of irrigation on volatile substances in wines was greater than that of fertigation.In addition,there was also a correlation between the concentrations of multiple amino acids in grapes and volatile components in wines.Principal component analysis showed that the wine from the HFMW treatment had the best quality among all treatments. 展开更多
关键词 fertilizer and water management GRAPE ine amino acids volatile components
原文传递
Evaluating the Effects of Sustainable Chemical and Organic Fertilizers with Water Saving Practice on Corn Production and Soil Characteristics 被引量:1
2
作者 Xuejun Zhang Muhammad Amjad Bashir +8 位作者 Qurat-Ul-Ain Raza Xiaotong Liu Jianhang Luo Ying Zhao Qiuliang Lei Hafiz Muhammad Ali Raza Abdur Rehim Yucong Geng Hongbin Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第5期1349-1360,共12页
The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resultin... The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position. 展开更多
关键词 Chemical fertilizer soil quality sustainable agriculture water management
下载PDF
Green High-yield and High-efficiency Cultivation Techniques of Integrated Management of Water and Fertilizer for Maize under Mulch Drip Irrigation
3
作者 Guangbin YANG 《Plant Diseases and Pests》 CAS 2023年第3期22-26,共5页
The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and i... The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and its component factor indexes,pre-sowing preparation,sowing,post-sowing management,field management at the seedling stage,integrated management of water and fertilizer for target yield of maize,rational application of micro-fertilizer,comprehensive prevention and control of diseases and pests,timely harvest,etc.,in order to provide a reference for agricultural technicians,maize farmers and maize industry development in northern Xinjiang. 展开更多
关键词 Mulch drip irrigation MAIZE Integrated management of water and fertilizer Cultivation techniques
下载PDF
Review on the Impact of Climate Change on Great Lakes Region’s Agriculture and Water Resources
4
作者 Zeyu Shen 《Journal of Geoscience and Environment Protection》 2024年第7期165-176,共12页
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol... This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change. 展开更多
关键词 Climate Change Midwest USA Agricultural Impacts Urban Runoff Sustainable Practices Precipitation Patterns Temperature Increase Greenhouse Gas Emissions soil Erosion water management
下载PDF
An Evaluation of Manure Management Strategies, Phosphorus Surface Runoff Potential and Water Usage at an Arkansas Discovery Dairy Farm
5
作者 James M. Burke Mike B. Daniels +5 位作者 Pearl Webb Andrew N. Sharpley Timothy Glover Lawrence Berry Karl W. Van Devender Stan Rose 《Journal of Environmental Protection》 2023年第9期742-760,共19页
Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haa... Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton;and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m<sup>3</sup>⋅d<sup>-1</sup>). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation. 展开更多
关键词 Manure management soil Test Phosphorus Surface Runoff water Usage Manure Composting Environmental Hazards ARKANSAS Milk Center Wastewater Treatment System Statistical Analysis
下载PDF
Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice 被引量:4
6
作者 WANG Shao-hua, CAO Wei-xing, DING Yan-feng, TIAN Yong-chao and JIANG Dong (Key Laboratory of Crop Growth Regulation, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2003年第10期1091-1096,共6页
The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw... The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified. 展开更多
关键词 RICE soil water management Application Nitrogen fertilizer INTERACTION
下载PDF
Effect of water and fertilizer coupling optimization test on water use efficiency of rice in black soil regions 被引量:4
7
作者 LIN Yanyu ZHANG Zhongxue +1 位作者 XU Dan NIE Tangzhe 《排灌机械工程学报》 EI CSCD 北大核心 2016年第2期151-156,共6页
How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical mode... How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content. 展开更多
关键词 black soil RICE controlled irrigation water and fertilizer optimization plan WUE
下载PDF
Spatial variability of soil properties in red soil and its implications for site-specific fertilizer management 被引量:6
8
作者 SONG Fang-fang XU Ming-gang +5 位作者 DUAN Ying-hua CAI Ze-jiang WEN Shi-lin CHEN Xian-ni SHI Wei-qi Gilles COLINET 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第9期2313-2325,共13页
Assessing spatial variability and mapping of soil properties constitute important prerequisites for soil and crop management in agricultural areas. To explore the relationship between soil spatial variability and land... Assessing spatial variability and mapping of soil properties constitute important prerequisites for soil and crop management in agricultural areas. To explore the relationship between soil spatial variability and land management, 256 samples were randomly collected at two depths (surface layer 0–20 cm and subsurface layer 20–40 cm) under different land use types and soil parent materials in Yujiang County, Jiangxi Province, a red soil region of China. The pH, soil organic matter (SOM), total nitrogen (TN), cation exchange capacity (CEC), and base saturation (BS) of the soil samples were examined and mapped. The results indicated that soils in Yujiang were acidified, with an average pH of 4.87 (4.03–6.46) in the surface layer and 4.99 (4.03–6.24) in the subsurface layer. SOM and TN were significantly higher in the surface layer (27.6 and 1.50 g kg–1, respectively) than in the subsurface layer (12.1 and 0.70 g kg–1, respectively), while both CEC and BS were low (9.0 and 8.0 cmol kg–1, 29 and 38% for surface and subsurface layers, respectively). Paddy soil had higher pH (mean 4.99) than upland and forest soils, while soil derived from river alluvial deposits (RAD) had higher pH (mean 5.05) than the other three parent materials in both layers. Geostatistical analysis revealed that the best fit models were exponential for pH and TN, and spherical for BS in both layers, while spherical and Gaussian were the best fitted for SOM and CEC in the surface and subsurface layers. Spatial dependency varied from weak to strong for the different soil properties in both soil layers. The maps produced by selecting the best predictive variables showed that SOM, TN, and CEC had moderate levels in most parts of the study area. This study highlights the importance of site-specific agricultural management and suggests guidelines for appropriate land management decisions. 展开更多
关键词 spatial variability soil pH CEC BS site-specific fertilizer management
下载PDF
Effects of Land Management Practices on Soil Water in Southwestern Mountainous Area, China 被引量:3
9
作者 SHAO Jing-an WEI Chao-fu XIE De-ti 《Agricultural Sciences in China》 CAS CSCD 2008年第7期871-886,共16页
The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during Nov... The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during November 2002 to November 2004. The experimental field is divided into three parts based on soil layer depths, 0-60 cm (part Ⅰ), 0-40 cm (part Ⅱ), and 0- 20 cm (part Ⅲ), and they all had the same slope azimuth (SE), slope (10°), and slope type (linear). The experimental plots were subjected to the following treatments: cross-sloping tillage (CST); cross-sloping tillage with organic manure (CST/ OM); cross-sloping tillage with straw mulch (CST/SM); contour ridge culture (CRC); contour ridge culture with organic manure (CRC/OM); and contour ridge culture with straw mulch (CRC/SM), to identify the effects of management practices on soil water. Water contents were determined for soil samples collected, using a 2.2 cm diameter manual probe. Soil water was monitored once every five days from Nov. 20, 2002 to Nov. 20, 2004. The results indicated that, in the study stages, an integration of rainfall, evaporative losses, and crop transcription controlled the basic tendencies of profile (mean) soil water, while land management practices, to a certain extent, only modified its amount, distribution, and routing. Moreover, these modifications also mainly focused on the first 20 cm depth of topsoil layer. When each management practice was compared with control treatment, season changes of profile (mean) soil water were pronounced, while interannual changes among them were not significant. More comparisons indicated that, in the study stages, contour ridge culture had better effects than cross-sloping tillage. And under the same tillage, the combination of organic manure could achieve more than straw mulch. These management practices should be recommended considering the effectiveness of soil and water management techniques in the southwestern mountainous area, China. 展开更多
关键词 land management practices soil water precision water management southwestern mountainous area China
下载PDF
Effects of Nano-carbon Humic Acid Water-retaining Fertilizer on Citrus Growth and the Soil Bacterial Community in Citrus Field 被引量:1
10
作者 Men Shuhui Ding Fangjun +3 位作者 Zhang Hong Ke Chao Zhang Shiwei Huang Zhanbin 《Meteorological and Environmental Research》 CAS 2018年第6期84-89,共6页
[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventi... [Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus. 展开更多
关键词 Nano-carbon humic acid water-retaining fertilizer(CSF) soil bacteria Community structure Yield Quality
下载PDF
Effects of Different Nutrient Management Systems and Cultivation Methods on Crop Yield and Soil Fertility 被引量:6
11
作者 刘小玲 贾良良 +3 位作者 韩宝文 李春杰 刘文菊 刘孟朝 《Agricultural Science & Technology》 CAS 2011年第11期1674-1679,共6页
[Objective] The aim was to provide scientific basis for improving the middle and low yielding fields fertility and farmland productivity. [Method] A field experiment was carried out to study the effects of different m... [Objective] The aim was to provide scientific basis for improving the middle and low yielding fields fertility and farmland productivity. [Method] A field experiment was carried out to study the effects of different management practices (including nutrient management systems and cultivation methods) on crop yield and soil fertility in winter wheat/summer maize rotation system. [Result] The crop yield in the treatment of the high yield and high efficiency system was remarkably higher than farmer conventional management practice. After five crop seasons experiment, the contents of soil organic matter for high yield and high efficiency system increased 2.72-3.01 g/kg, and that of soil total nitrogen increased 0.12-0.16 g/kg, the soil Olsen-P increased 5.2 mg/kg and the soil available K (NH4OAC-K) increased about 37.8 mg/kg. [Conclusion] Considering the yield and soil fertility comprehensively, the management system of high yield and high efficiency could effectively increase the crop yield and improve the soil fertility. 展开更多
关键词 Nutrient management Winter wheat-summer maize rotation soil fertility Tillage and cultivation mode
下载PDF
Effect of Different Levels of Water Soluble Phosphorus in Complex Fertilizers on Crop Productivity and Soil Health
12
作者 D.V.Bhagat S.N.Gawade +3 位作者 R.C.Sharma A.P.Kale J.A.Shaikh P Banik 《NASS Journal of Agricultural Sciences》 2019年第1期32-45,共14页
Field experiments were undertaken on sandy soils with three cropping systems at Giridih,Jharkhand,India for two years during 2012-2014.The experiments were executed in split plot design by assigning water soluble phos... Field experiments were undertaken on sandy soils with three cropping systems at Giridih,Jharkhand,India for two years during 2012-2014.The experiments were executed in split plot design by assigning water soluble phosphorus(WSP)fertilizers in main-plot and recommended dose of phosphorus(RDP)in sub-plot with three replications.The maximum economical yield of rice(4705 kg/ha),baby corn(842 kg/ha)and Chickpea(920 kg/ha)were recorded with the application of 30%WSP.The maximum economical yield of successive crops-wheat(3185 kg/ha),mustard(1720 kg/ha)and groundnut(1578 kg/ha)were recorded with the application of 30%WSP and 100%RDP treatment.Almost similar trends were noticed in terms of by-product yield,nutrient uptake and residual soil fertility status.All the levels of WSP(30%-89%)in complex fertilizers were found to be equally effective for grain yield,straw yield,nutrient uptake,and residual soil fertility. 展开更多
关键词 water soluble phosphorus Nitrophosphates Cropping system YIELD soil fertility Nutrient uptake
下载PDF
Migration and risks of potentially toxic elements from sewage sludge applied to acid forest soil
13
作者 Shuangshuang Chu Lihua Xian +6 位作者 Can Lai Wenjun Yang Jing Wang Mandi Long Jianhui Ouyang Dandan Liao Shucai Zeng 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期2011-2026,共16页
`The application of sewage sludge(SS)to forested lands may lead to the downward migration of potentially toxic elements(PTEs)through rainfall and thus pose risk to the subsoil and groundwater.Batch column experiments ... `The application of sewage sludge(SS)to forested lands may lead to the downward migration of potentially toxic elements(PTEs)through rainfall and thus pose risk to the subsoil and groundwater.Batch column experiments were conducted using leaching water equivalent to the rainfall amount in the study area over 3 years to investigate changes in concentrations of PTEs,including copper(Cu),zinc(Zn),lead(Pb),cadmium(Cd),and nickel(Ni)in the leachate from the acidic forest soil.Water quality index of leachate,potential ecological risk and human health risk in soil at different leaching stages were compared.Sewage sludge was applied at SS/soil mass ratios of 0:100(controls),15:85(T1),30:70(T2),45:55(T3),60:40(T4),and 75:25(T5).All treatments resulted in increased PTEs concentration in the upper 20 cm soil,T3-T5 increased potential ecological risk from"low"(control)to"moderate"or"considerable".During first year leaching,PTEs concentration increased with increasing SS/soil ratios,but the water quality index of T1-T3 was"excellent"or"good".Pb,Cu,Cd,and Ni in the 20-40 cm soil depth,and Zn in the 60-80 cm soil depth were also enriched,but potential ecological risk was"low".In subsequent leaching,PTEs concentration of leachate gradually returned to the background value and water quality index was"excellent".There were no significant changes in PTEs and ecological risk observed.During the monitoring process,the health risk caused by the migration of PTEs to the human body was always within the acceptable range.Overall,this study provides a reference for the management of risks from the application of SS on forestlands,i.e.,SS/soil ratios<45:55 is recommended on forestlands,and special attention should be given to early leaching risk.In addition,it also provides an important assessment method for the risk of PTEs leaching and migration in forested land application. 展开更多
关键词 water quality soil column Rainfall simulation Risk assessment Forest management
下载PDF
Chemical and Microbiological Parameters of Paddy Soil Quality as Affected by Different Nutrient and Water Regimes 被引量:21
14
作者 YANGChang-Ming YANGLin-Zhang YANTing-Mei 《Pedosphere》 SCIE CAS CSCD 2005年第3期369-378,共10页
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r... A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil. 展开更多
关键词 biological index of fertility nutrient regimes paddy soil quality water regimes
下载PDF
Rice Yield and Water Use as Affected by Soil Management Practices 被引量:11
15
作者 WANGXiao-Ying XIEHong-Tu +1 位作者 LIANGWen-Ju WENDa-Zhong 《Pedosphere》 SCIE CAS CSCD 2004年第3期331-337,共7页
A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic ... A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic brown soil during 2001 and 2002. A completely randomexperimental design with three replications was employed, having four soil management practices astreatments, namely: an undisturbed plow layer (CK), a thin plastic film (TN), a thick plastic film(TI) and subsoil compacting (CP). Results indicated no significant differences among all treatmentsfor rice biomass and grain yields. Also, water consumption was about the same for treatments TN andCK, however the treatments TI and CP were much lower with more than 45% and 40% of the irrigationwater in the treatments TI and CP, respectively, saved each year compared to CK. Therefore, wateruse efficiency was higher in the treatments TI and CP. These results will provide a scientific basisfor the water-saving rice cultivation. 展开更多
关键词 EVAPOTRANSPIRATION PERCOLATION RICE soil management water use efficiency
下载PDF
Effects of level soil bunds and stone bunds on soil properties and its implications for crop production: the case of Bokole watershed, Dawuro zone, Southern Ethiopia 被引量:3
16
作者 Kebede Wolka Awdenegest Moges Fantaw Yimer 《Agricultural Sciences》 2011年第3期357-363,共7页
Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the s... Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the structure has not been studied. This study analyzed the effect of LSB and SB on selected soil properties, when compared with nonterraced cropland. The Bokole watershed was divided into two units. From upper watershed, three croplands with LSB (aged 4, 6, and 9 years) and three nonterraced croplands each adjacent to one of the LSB were selected. Similarly, in lower watershed, SB aged 4, 6, and 8 years and three nonterraced croplands each adjacent to one of the SB were selected. From each cropland with LSB and SB, three composite soil samples (rep licates) were collected systematically in X designed rectangular plot. From each nonterraced cropland, three composite soil samples (replicates) were collected in X designed square plot. A total of 36 soil samples were analyzed for Soil Organic Carbon (SOC), Total Nitrogen (TN), Available Phosphorus (AP), Available Potassium (AK), pH, and Cation Exchange Capacity (CEC) following standard laboratory procedures. Most soil parameters were not significantly different in cropland with LSB and SB compared to nonterraced. However, in LSB aged 4 years and SB aged 6 years AP and pH were significantly less than their adjacent-nonterraced cropland. In SB aged 8 years, SOC, AP, AK, and pH were also significantly less than adjacent-nonterraced cropland. Past erosion, and past land uses are likely factors contributed to the observed result. It was inferred that the mean con tribution of LSB and SB alone for crop production with regard to analyzed soil parameters was not significant in the considered sites. Additional soil fertility management practices should be incorporated for better effect. 展开更多
关键词 Crop Yield LEVEL soil Bund Nonterraced soil FERTILITY STONE Bund water Erosion waterSHED
下载PDF
Nitrogen and Phosphorus Loss Law and Emission Reduction Effects Under Water and Fertilizer Management Integrated Mode in Dike Paddy Field 被引量:2
17
作者 GUO Longsheng ZHOU Guangtao GUO Zhongyuan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第4期31-37,共7页
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D... To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body. 展开更多
关键词 paddy field the integrated mode of water and fertilizer management non-point source pollution nitrogen and phosphorus loss
下载PDF
Water Management for Improvement of Rice Yield,Appearance Quality and Palatability with High Temperature During Ripening Period 被引量:2
18
作者 Yuji Matsue Katsuya Takasaki Jun Abe 《Rice science》 SCIE CSCD 2021年第4期409-416,I0038,共9页
To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability ... To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability were investigated.Compared with intermittent irrigation and flooded irrigation,the soil temperature with saturated irrigation remained low throughout the day,and the decrease rate of the bleeding rate of hills was the lowest.These results suggested that the saturated irrigation maintained root activity.For the three irrigation types,the number of spikelets per m2 and 1000-grain weight were similar,however,saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains.The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain,furthermore,the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low.Thus,under high-temperature ripening conditions,soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time.The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage. 展开更多
关键词 appearance quality root activity high-temperature ripening damage PALATABILITY saturated irrigation soil temperature water management rice yield intermittent irrigation flooded irrigation
下载PDF
Analysis of Water Stress Prediction Quality as Influenced by the Number and Placement of Temporal Soil-Water Monitoring Sites 被引量:1
19
作者 Luan Pan Viacheslav I. Adamchuk +2 位作者 Richard B. Ferguson Pierre R. L. Dutilleul Shiv O. Prasher 《Journal of Water Resource and Protection》 2014年第11期961-971,共11页
In an agricultural field, monitoring the temporal changes in soil conditions can be as important as understanding spatial heterogeneity when it comes to determining the locally-optimized application rates of key agric... In an agricultural field, monitoring the temporal changes in soil conditions can be as important as understanding spatial heterogeneity when it comes to determining the locally-optimized application rates of key agricultural inputs. For example, the monitoring of soil water content is needed to decide on the amount and timing of irrigation. On-the-go soil sensing technology provides a way to rapidly obtain high-resolution, multiple data layers to reveal soil spatial variability, at a relatively low cost. To take advantage of this information, it is important to define the locations, which represent diversified field conditions, in terms of their potential to store and release soil water. Choosing the proper locations and the number of soil monitoring sites is not straightforward. In this project, sensor-based maps of soil apparent electrical conductivity and field elevation were produced for seven agricultural fields in Nebraska, USA. In one of these fields, an eight-node wireless sensor network was used to establish real-time relationships between these maps and the Water Stress Potential (WSP) estimated using soil matric potential measurements. The results were used to model hypothetical WSP maps in the remaining fields. Different placement schemes for temporal soil monitoring sites were evaluated in terms of their ability to predict the hypothetical WSP maps with a different range and magnitude of spatial variability. When a large number of monitoring sites were used, it was shown that the probability for uncertain model predictions was relatively low regardless of the site selection strategy. However, a small number of monitoring sites may be used to reveal the underlying relationship only if these locations are chosen carefully. 展开更多
关键词 On-the-Go soil Sensing Variable-Rate IRRIGATION Electrical Conductivity SITE-SPECIFIC water management soil Matric Potential
下载PDF
Soil and Water Resources and Land Sustainable Productivity in the Catchment Area with Intensive Management in Hilly Red Soil Regions,China
20
作者 HUANGDao-you WANGKe-lin +2 位作者 CHENGui-qiu HUANGMin PENGTing-bo 《Agricultural Sciences in China》 CAS CSCD 2004年第5期356-363,共8页
Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studie... Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly. 展开更多
关键词 Catchment area with intensive management soil and water resources soil fertility Land sustainable productivity Hilly red soil region
下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部