With the advancement of globalization and information technology,the financial sharing mode has gradually emerged as a crucial means for enterprises to optimize their financial management.Particularly within the conte...With the advancement of globalization and information technology,the financial sharing mode has gradually emerged as a crucial means for enterprises to optimize their financial management.Particularly within the context of economic globalization,informatization,and digital transformation,enterprises find themselves navigating a rapidly evolving market environment by intensifying competition.To enhance efficiency and competitiveness,many enterprises have embraced the financial sharing model to streamline financial management processes,curtail costs,and bolster the execution of corporate strategies.This article aims to dissect the definition and essence of the financial sharing model and its significance in the realm of enterprise financial management.Drawing upon this analysis and aligning with the needs of enterprise financial management,the article proposes ideas for optimizing management practices,aspiring to foster reform and innovation in enterprise financial management while enhancing its level of financial management and ability to respond to financial risks.This contribution seeks to provide valuable insights for practitioners in the field.展开更多
The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unload...The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unloading efficiency of container terminals. These terminals can also increase the port’s transportation volume while ensuring the quality of cargo loading and unloading, which has become an inevitable trend in the future development of ports. However, the continuous growth of the port’s transportation volume has increased the horizontal transportation pressure on the automated terminal, and the problems of route conflicts and road locks faced by automated guided vehicles (AGV) have become increasingly prominent. Accordingly, this work takes Xiamen Yuanhai automated container terminal as an example. This work focuses on analyzing the interference problem of path conflict in its horizontal transportation AGV scheduling. Results show that path conflict, the most prominent interference factor, will cause AGV scheduling to be unable to execute the original plan. Consequently, the disruption management was used to establish a disturbance recovery model, and the Dijkstra algorithm for combining with time windows is adopted to plan a conflict-free path. Based on the comparison with the rescheduling method, the research obtains that the deviation of the transportation path and the deviation degree of the transportation path under the disruption management method are much lower than those of the rescheduling method. The transportation path deviation degree of the disruption management method is only 5.56%. Meanwhile, the deviation degree of the transportation path under the rescheduling method is 44.44%.展开更多
Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion...Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.展开更多
With the background of enterprise compliance management,this paper discusses how to improve the level of enterprise legal service and reduce enterprise legal risks by optimizing the compliance management system.It aim...With the background of enterprise compliance management,this paper discusses how to improve the level of enterprise legal service and reduce enterprise legal risks by optimizing the compliance management system.It aims to analyze the current situation and existing problems of enterprise legal services through the analysis of the importance of compliance management.Furthermore,it delves into the case of enterprise legal service strategy based on compliance management optimization to verify the effectiveness and feasibility of enterprise legal service strategy.展开更多
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m...Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.展开更多
With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integ...With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac...The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.展开更多
Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the...Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.展开更多
Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment meth...Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.展开更多
Building construction needs have expanded in line with people's demands and the quality of life in today’s society.Therefore,the traditional construction management technology can no longer meet the current manag...Building construction needs have expanded in line with people's demands and the quality of life in today’s society.Therefore,the traditional construction management technology can no longer meet the current management and construction requirements,so it is necessary to further optimize the construction management technology.Therefore,this paper focuses on exploring measures regarding building construction technology optimization.Firstly,the paper briefly expounds its optimization value,then systematically analyzes some problems faced by the current housing construction management,and finally puts forward some targeted management optimization measures for future reference.展开更多
Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring pro...Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring process has gained significant attention among research communities and governments.Real-time monitoring of disaster areas using WSN is a challenging process due to the energy-limited sensor nodes.Therefore,the clustering process can be utilized to improve the energy utilization of the nodes and thereby improve the overall functioning of the network.In this aspect,this study proposes a novel Lens-Oppositional Wild Goose Optimization based Energy Aware Clustering(LOWGO-EAC)scheme for WSN-assisted real-time disaster management.The major intention of the LOWGO-EAC scheme is to perform effective data collection and transmission processes in disaster regions.To achieve this,the LOWGOEAC technique derives a novel LOWGO algorithm by the integration of the lens oppositional-based learning(LOBL)concept with the traditional WGO algorithm to improve the convergence rate.In addition,the LOWGO-EAC technique derives a fitness function involving three input parameters like residual energy(RE),distance to the base station(BS)(DBS),and node degree(ND).The proposed LOWGO-EAC technique can accomplish improved energy efficiency and lifetime of WSNs in real-time disaster management scenarios.The experimental validation of the LOWGO-EAC model is carried out and the comparative study reported the enhanced performance of the LOWGO-EAC model over the recent approaches.展开更多
At present,China has entered the era of the digital economy,the business environment faced by enterprses has changed significantly,and the traditional financial management model is no longer adaptable due to market de...At present,China has entered the era of the digital economy,the business environment faced by enterprses has changed significantly,and the traditional financial management model is no longer adaptable due to market demand.Hence,enterprises need to study the characteristics of the digital economy and adopt ffective financial management oplimization and upgrading paths.This article summarizes the characteristics of the digital economy,concludes and analyzes the opportunities and challenges faced by corporate financial management from the perspective of the digital economy,investigates the necessity ol optimizing and upgrading corporate financial management,and examines the efective optimization and upgrading paths,hoping to provide reference information for corporate financial managers.展开更多
The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that deman...The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.展开更多
To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltai...To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
The economic management of colleges and universities has always been a topic of great concern to China’s educational career,therefore,this paper will firstly make the necessary analysis of the current implementation ...The economic management of colleges and universities has always been a topic of great concern to China’s educational career,therefore,this paper will firstly make the necessary analysis of the current implementation of the economic management of colleges and universities in China,and then the reasons for the problems of economic management of colleges and universities in China is realized a detailed investigation,and finally,the economic management of colleges and universities based on capital and cost management optimization strategy is made a full discussion,looking forward to providing the necessary guidance for researchers in this field.展开更多
The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a network.In a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles...The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a network.In a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles to avoid congestion.Therefore,optimal path selection to route traffic between the origin and destination is vital.This research proposed a realistic strategy to reduce traffic management service response time by enabling real-time content distribution in IoV systems using heterogeneous network access.Firstly,this work proposed a novel use of the Ant Colony Optimization(ACO)algorithm and formulated the path planning optimization problem as an Integer Linear Program(ILP).This integrates the future estimation metric to predict the future arrivals of the vehicles,searching the optimal routes.Considering the mobile nature of IOV,fuzzy logic is used for congestion level estimation along with the ACO to determine the optimal path.The model results indicate that the suggested scheme outperforms the existing state-of-the-art methods by identifying the shortest and most cost-effective path.Thus,this work strongly supports its use in applications having stringent Quality of Service(QoS)requirements for the vehicles.展开更多
This paper proposes an intelligent management system (IMS) to help managers in their delicate and tedious task of exploiting the plethora of data (indicators) contained in management dashboards. This system is based o...This paper proposes an intelligent management system (IMS) to help managers in their delicate and tedious task of exploiting the plethora of data (indicators) contained in management dashboards. This system is based on intelligent agents, ontologies and data mining. It is implemented by PASSI (Process for Agent Societies Specification and Implementation) methods for agent design and implementation, the Methodology for Knowledge Modeling and Hot-Winters for data prediction. Intelligent agents not only track indicators but also store the knowledge of managers within the company. Ontologies are used to manage the representation and presentation aspects of knowledge. Data mining makes it possible to: make the most of all available data;model the industrial process of data selection, exploration and modeling;and transform behaviors into predictive indicators. An instance of the IMS named SYGISS, currently in operation within a large brewery organization, allows us to observe very interesting results: the extraction of indicators is done in less than 5 minutes whereas manual extraction used to take 14 days;the generation of dashboards is instantaneous whereas it used to take 12 hours;the interpretation of indicators is instantaneous whereas it used to take a day;forecasts are possible and are done in less than 5 minutes whereas they did not exist with the old management. These important contributions help to optimize the management of this organization.展开更多
The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it i...The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.展开更多
文摘With the advancement of globalization and information technology,the financial sharing mode has gradually emerged as a crucial means for enterprises to optimize their financial management.Particularly within the context of economic globalization,informatization,and digital transformation,enterprises find themselves navigating a rapidly evolving market environment by intensifying competition.To enhance efficiency and competitiveness,many enterprises have embraced the financial sharing model to streamline financial management processes,curtail costs,and bolster the execution of corporate strategies.This article aims to dissect the definition and essence of the financial sharing model and its significance in the realm of enterprise financial management.Drawing upon this analysis and aligning with the needs of enterprise financial management,the article proposes ideas for optimizing management practices,aspiring to foster reform and innovation in enterprise financial management while enhancing its level of financial management and ability to respond to financial risks.This contribution seeks to provide valuable insights for practitioners in the field.
文摘The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unloading efficiency of container terminals. These terminals can also increase the port’s transportation volume while ensuring the quality of cargo loading and unloading, which has become an inevitable trend in the future development of ports. However, the continuous growth of the port’s transportation volume has increased the horizontal transportation pressure on the automated terminal, and the problems of route conflicts and road locks faced by automated guided vehicles (AGV) have become increasingly prominent. Accordingly, this work takes Xiamen Yuanhai automated container terminal as an example. This work focuses on analyzing the interference problem of path conflict in its horizontal transportation AGV scheduling. Results show that path conflict, the most prominent interference factor, will cause AGV scheduling to be unable to execute the original plan. Consequently, the disruption management was used to establish a disturbance recovery model, and the Dijkstra algorithm for combining with time windows is adopted to plan a conflict-free path. Based on the comparison with the rescheduling method, the research obtains that the deviation of the transportation path and the deviation degree of the transportation path under the disruption management method are much lower than those of the rescheduling method. The transportation path deviation degree of the disruption management method is only 5.56%. Meanwhile, the deviation degree of the transportation path under the rescheduling method is 44.44%.
文摘Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.
文摘With the background of enterprise compliance management,this paper discusses how to improve the level of enterprise legal service and reduce enterprise legal risks by optimizing the compliance management system.It aims to analyze the current situation and existing problems of enterprise legal services through the analysis of the importance of compliance management.Furthermore,it delves into the case of enterprise legal service strategy based on compliance management optimization to verify the effectiveness and feasibility of enterprise legal service strategy.
基金supported in part by the National Natural Science Foundation of China under grants 61971080,61901367in part by the Natural Science Foundation of Shaanxi Province under grant 2020JQ-844in part by the open-end fund of the Engineering Research Center of Intelligent Air-ground Integrated Vehicle and Traffic Control(ZNKD2021-001)。
文摘Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.
基金supported in part by the National Key R&D Program of China(2020YFB1806103)the National Natural Science Foundation of China under Grant 62225103 and U22B2003+1 种基金Beijing Natural Science Foundation(L212004)China University Industry-University-Research Collaborative Innovation Fund(2021FNA05001).
文摘With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金support provided National Natural Science Foundation of China with Grant No.51976016Natural Science Foundation of Hunan Province,China with Grant No.2020JJ4616Research Foundation of Education Bureau of Hunan Province(18B149).
文摘The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.
基金support by Ministry of Housing and Urban-Rural Development’s Science and Technology Plan Project 2022(Hubei Province).
文摘Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.
文摘Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.
文摘Building construction needs have expanded in line with people's demands and the quality of life in today’s society.Therefore,the traditional construction management technology can no longer meet the current management and construction requirements,so it is necessary to further optimize the construction management technology.Therefore,this paper focuses on exploring measures regarding building construction technology optimization.Firstly,the paper briefly expounds its optimization value,then systematically analyzes some problems faced by the current housing construction management,and finally puts forward some targeted management optimization measures for future reference.
基金This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR01。
文摘Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring process has gained significant attention among research communities and governments.Real-time monitoring of disaster areas using WSN is a challenging process due to the energy-limited sensor nodes.Therefore,the clustering process can be utilized to improve the energy utilization of the nodes and thereby improve the overall functioning of the network.In this aspect,this study proposes a novel Lens-Oppositional Wild Goose Optimization based Energy Aware Clustering(LOWGO-EAC)scheme for WSN-assisted real-time disaster management.The major intention of the LOWGO-EAC scheme is to perform effective data collection and transmission processes in disaster regions.To achieve this,the LOWGOEAC technique derives a novel LOWGO algorithm by the integration of the lens oppositional-based learning(LOBL)concept with the traditional WGO algorithm to improve the convergence rate.In addition,the LOWGO-EAC technique derives a fitness function involving three input parameters like residual energy(RE),distance to the base station(BS)(DBS),and node degree(ND).The proposed LOWGO-EAC technique can accomplish improved energy efficiency and lifetime of WSNs in real-time disaster management scenarios.The experimental validation of the LOWGO-EAC model is carried out and the comparative study reported the enhanced performance of the LOWGO-EAC model over the recent approaches.
文摘At present,China has entered the era of the digital economy,the business environment faced by enterprses has changed significantly,and the traditional financial management model is no longer adaptable due to market demand.Hence,enterprises need to study the characteristics of the digital economy and adopt ffective financial management oplimization and upgrading paths.This article summarizes the characteristics of the digital economy,concludes and analyzes the opportunities and challenges faced by corporate financial management from the perspective of the digital economy,investigates the necessity ol optimizing and upgrading corporate financial management,and examines the efective optimization and upgrading paths,hoping to provide reference information for corporate financial managers.
文摘The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.
基金This research is supported by the Deputyship forResearch&Innovation,Ministry of Education in Saudi Arabia under Project Number(IFP-2022-35).
文摘To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
文摘The economic management of colleges and universities has always been a topic of great concern to China’s educational career,therefore,this paper will firstly make the necessary analysis of the current implementation of the economic management of colleges and universities in China,and then the reasons for the problems of economic management of colleges and universities in China is realized a detailed investigation,and finally,the economic management of colleges and universities based on capital and cost management optimization strategy is made a full discussion,looking forward to providing the necessary guidance for researchers in this field.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a network.In a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles to avoid congestion.Therefore,optimal path selection to route traffic between the origin and destination is vital.This research proposed a realistic strategy to reduce traffic management service response time by enabling real-time content distribution in IoV systems using heterogeneous network access.Firstly,this work proposed a novel use of the Ant Colony Optimization(ACO)algorithm and formulated the path planning optimization problem as an Integer Linear Program(ILP).This integrates the future estimation metric to predict the future arrivals of the vehicles,searching the optimal routes.Considering the mobile nature of IOV,fuzzy logic is used for congestion level estimation along with the ACO to determine the optimal path.The model results indicate that the suggested scheme outperforms the existing state-of-the-art methods by identifying the shortest and most cost-effective path.Thus,this work strongly supports its use in applications having stringent Quality of Service(QoS)requirements for the vehicles.
文摘This paper proposes an intelligent management system (IMS) to help managers in their delicate and tedious task of exploiting the plethora of data (indicators) contained in management dashboards. This system is based on intelligent agents, ontologies and data mining. It is implemented by PASSI (Process for Agent Societies Specification and Implementation) methods for agent design and implementation, the Methodology for Knowledge Modeling and Hot-Winters for data prediction. Intelligent agents not only track indicators but also store the knowledge of managers within the company. Ontologies are used to manage the representation and presentation aspects of knowledge. Data mining makes it possible to: make the most of all available data;model the industrial process of data selection, exploration and modeling;and transform behaviors into predictive indicators. An instance of the IMS named SYGISS, currently in operation within a large brewery organization, allows us to observe very interesting results: the extraction of indicators is done in less than 5 minutes whereas manual extraction used to take 14 days;the generation of dashboards is instantaneous whereas it used to take 12 hours;the interpretation of indicators is instantaneous whereas it used to take a day;forecasts are possible and are done in less than 5 minutes whereas they did not exist with the old management. These important contributions help to optimize the management of this organization.
基金the National Natural Science Foundation of China(Grant No.11935010)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology。
文摘The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.