To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi...To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.展开更多
Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilis...Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Spacecraft orbit evasion is an effective method to ensure space safety. In the spacecraft’s orbital plane, the space non-cooperate target with autonomous approaching to the spacecraft may have a dangerous rendezvous....Spacecraft orbit evasion is an effective method to ensure space safety. In the spacecraft’s orbital plane, the space non-cooperate target with autonomous approaching to the spacecraft may have a dangerous rendezvous. To deal with this problem, an optimal maneuvering strategy based on the relative navigation observability degree is proposed with angles-only measurements. A maneuver evasion relative navigation model in the spacecraft’s orbital plane is constructed and the observability measurement criteria with process noise and measurement noise are defined based on the posterior Cramer-Rao lower bound. Further, the optimal maneuver evasion strategy in spacecraft’s orbital plane based on the observability is proposed. The strategy provides a new idea for spacecraft to evade safety threats autonomously. Compared with the spacecraft evasion problem based on the absolute navigation, more accurate evasion results can be obtained. The simulation indicates that this optimal strategy can weaken the system’s observability and reduce the state estimation accuracy of the non-cooperative target, making it impossible for the non-cooperative target to accurately approach the spacecraft.展开更多
In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation eval...In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better.展开更多
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net...Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.展开更多
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me...Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.展开更多
Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebr...Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA.展开更多
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery...Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of direct...Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.展开更多
An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.Th...An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.展开更多
A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision pr...A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision process, and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under uncertain conditions. Considering an active opponent, the opponent's maneuvers can be modeled stochastically. The solution of multistage influence diagram can be obtained by converting the multistage influence diagram into a two-level optimization problem. The simulation results show the model is effective.展开更多
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly convergin...Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.展开更多
The maneuvering flight governing equations for coaxial rotor helicopters are established. By introducing induced velocity interference factor analysis, the coaxial rotor aerodynamic interference can be taken into acc...The maneuvering flight governing equations for coaxial rotor helicopters are established. By introducing induced velocity interference factor analysis, the coaxial rotor aerodynamic interference can be taken into account. With the combination of coaxial rotor helicopter control features and nonlinear inverse solution technique, the governing equations for maneuvering flight can be solved so as to determine helicopter control input, control force and moment, and helicopter body attitudes which are needed for performing the defined maneuver. Finally, as an example of this methods engineering application, the calculated results with level turn, lateral jink maneuvers are presented and simply analyzed.展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
Based on the idea of zeroing the line of sight rate(LOSR),a novel nonlinear differential geometric(DG) law for intercepting the agile target is proposed.In the first part,the DG formulations are utilized to descri...Based on the idea of zeroing the line of sight rate(LOSR),a novel nonlinear differential geometric(DG) law for intercepting the agile target is proposed.In the first part,the DG formulations are utilized to describe the relatively kinematics model of missile and target,and the nonlinear DG guidance(DGG) law is proposed based on the nonlinear control theory to eliminate the influence brought by target.Further,the missile guidance commands are derived to overcome the information loss caused by decoupling condition,the new necessary initial condition is developed to guarantee capture the agile target.Then,the designed nonlinear DGG commands are transformed from an arc-length system to the time domain.A desirable aspect of the designed guidance law is that it does not require rigorous information about target acceleration.Representative numerical results show that the designed guidance law obtain a better performance than the traditional DGG law for agile target.展开更多
To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft m...To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.展开更多
基金Supported by the National Natural Science Foundation of China (60634030), the National Natural Science Foundation of China (60702066, 6097219) and the Natural Science Foundation of Henan Province (092300410158).
文摘To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.
文摘Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金supported by the National Key R&D Program of China (2020YFA0713502)the Special Fund Project for Guiding Local Scientific and Technological Development (2020ZYT003)+1 种基金the National Natural Science Foundation of China (U20B2055,61773021,61903086)the Natural Science Foundation of Hunan Province (2019JJ20018,2020JJ4280)。
文摘Spacecraft orbit evasion is an effective method to ensure space safety. In the spacecraft’s orbital plane, the space non-cooperate target with autonomous approaching to the spacecraft may have a dangerous rendezvous. To deal with this problem, an optimal maneuvering strategy based on the relative navigation observability degree is proposed with angles-only measurements. A maneuver evasion relative navigation model in the spacecraft’s orbital plane is constructed and the observability measurement criteria with process noise and measurement noise are defined based on the posterior Cramer-Rao lower bound. Further, the optimal maneuver evasion strategy in spacecraft’s orbital plane based on the observability is proposed. The strategy provides a new idea for spacecraft to evade safety threats autonomously. Compared with the spacecraft evasion problem based on the absolute navigation, more accurate evasion results can be obtained. The simulation indicates that this optimal strategy can weaken the system’s observability and reduce the state estimation accuracy of the non-cooperative target, making it impossible for the non-cooperative target to accurately approach the spacecraft.
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2022JQ-593)。
文摘In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better.
基金supported in part by the National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautical Science Foundation of China (Grant No. 20220001068001)National Natural Science Foundation of China (Grant No.61673327)+1 种基金Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. 2023-JC-QN-0733)China IndustryUniversity-Research Innovation Foundation (Grant No. 2022IT188)。
文摘Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.
基金supported by the National Natural Science Foundation of China (Project No.72301293)。
文摘Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.
基金supported by the National Natural Science Foundation of China,specifically through grants(No.8227431382074321).
文摘Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA.
基金Shaanxi Province key Research and Development Plan-Listed project(2022-JBGS-07)。
文摘Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
基金the National Natural Science Foundation of China (51809169,51879159,51490675,11432009, 51579145)Chang Jiang Scholars Program (T2014099)+2 种基金Shanghai Excellent Academic Leaders Program (17XD1402300)Program for Professor of Special Appointment (Eastern Scholar)at Shanghai Institutions of Higher Learning (2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09).
文摘Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.
基金supported by the Joint Equipment Fund of the Ministry of Education(6141A02022340)
文摘An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.
文摘A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision process, and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under uncertain conditions. Considering an active opponent, the opponent's maneuvers can be modeled stochastically. The solution of multistage influence diagram can be obtained by converting the multistage influence diagram into a two-level optimization problem. The simulation results show the model is effective.
基金supported by Natural Science Foundation Research Project of Shanxi Science and Technology Department(2016JM1032)
文摘Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
文摘The maneuvering flight governing equations for coaxial rotor helicopters are established. By introducing induced velocity interference factor analysis, the coaxial rotor aerodynamic interference can be taken into account. With the combination of coaxial rotor helicopter control features and nonlinear inverse solution technique, the governing equations for maneuvering flight can be solved so as to determine helicopter control input, control force and moment, and helicopter body attitudes which are needed for performing the defined maneuver. Finally, as an example of this methods engineering application, the calculated results with level turn, lateral jink maneuvers are presented and simply analyzed.
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
基金supported by the Doctorial Innovation Fund (DY11104)the Aviation Science Innovation Fund of China (20090196005,20100196002)
文摘Based on the idea of zeroing the line of sight rate(LOSR),a novel nonlinear differential geometric(DG) law for intercepting the agile target is proposed.In the first part,the DG formulations are utilized to describe the relatively kinematics model of missile and target,and the nonlinear DG guidance(DGG) law is proposed based on the nonlinear control theory to eliminate the influence brought by target.Further,the missile guidance commands are derived to overcome the information loss caused by decoupling condition,the new necessary initial condition is developed to guarantee capture the agile target.Then,the designed nonlinear DGG commands are transformed from an arc-length system to the time domain.A desirable aspect of the designed guidance law is that it does not require rigorous information about target acceleration.Representative numerical results show that the designed guidance law obtain a better performance than the traditional DGG law for agile target.
基金supported by the National Natural Science Foundation of China(61773267)the Shenzhen Fundamental Research Project(JCYJ2017030214551952420170818102503604)
文摘To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.