The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a hi...The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.展开更多
The Dounan manganese deposit is a typical large-scale marine sedimentary manganese deposit of the Middle Triassic in China. The metallogenic environment and change process directly dictate the migration, enrichment, a...The Dounan manganese deposit is a typical large-scale marine sedimentary manganese deposit of the Middle Triassic in China. The metallogenic environment and change process directly dictate the migration, enrichment, and precipitation of Mn. To better understand its metallogenetic environment, a detailed study was undertaken involving field observation, mineralogical and geochemical and M?ssbauer spectroscopic analyses. The major findings are as follows:(1) Lithofacies paleogeography, sedimentary structural characteristics, and geochemical indexes indicate that the deposits were formed in an epicontinental marine sedimentary basin environment of normal salinity;(2) there were three ore phases including Mn oxides, Mn carbonates, and mixed Mn ores. The ore minerals found were braunite, manganite, Ca-rhodochrosite, manganocalcite, and kutnahorite. Petrographic and mineralogical information indicates that the metallogenic environment was a weakly alkaline and weakly oxidized to weakly reduced environment, and the mineralization occurred near the redox interface;(3) the V/(V + Ni)ratios, δCe and Fe^(2+)/Fe^(3+) found in profiles of Baigu and Gake ore sections show that the redox conditions of the ore-forming environment were continuously changing; and(4) three Fe species, α-Fe_2O_3, para-Fe^(3+), and para-Fe^(2+),were found in hematite and clay mineral samples using M?ssbauer spectrum analysis. The presence and distribution of these Fe species indicate that the deposit was formed in a typical sedimentary environment during the mineralization process. In summary, our study showed that redox was a key factor controlling the mineralization of the Dounan manganese deposit. Our results have led us to the conclusion that transgression and regression caused fluctuations in sea level, which in turn caused the change of the redox environment. M?ssbauer spectroscopy is an effective tool for studying the redox conditions of the paleoenvironment in which sedimentary manganese deposits were formed.展开更多
In 2016,the Geological Brigade No.103 of Guizhou Geology and Mineral Exploration and Development Bureau discovered two super-large manganese deposits at Pujue and Taoziping,in Songtao County,Guizhou Province(Fig.1)....In 2016,the Geological Brigade No.103 of Guizhou Geology and Mineral Exploration and Development Bureau discovered two super-large manganese deposits at Pujue and Taoziping,in Songtao County,Guizhou Province(Fig.1).The Pujue manganese deposit has191.59 million tons of proven(332+333)class ore reserves,including 35.54 million tons of 332 class and展开更多
The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the meta...The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.展开更多
While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geolo...While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geological factors, the complexity of geological process and the asymmetry of geo-information. In this work, the manganese potential mapping for further exploration targeting is implemented via spatial analysis and modal-adaptive prospectivity modeling. On the basis of targeting criteria developed by the mineral system approach, the spatial analysis is leveraged to extract the predictor variables to identify features of the geological process. Specifically, a metallogenic field analysis approach is proposed to extract metallogenic information that quantifies the regional impacts of the synsedimentary faults and sedimentary basins. In the integration of the extracted predictor variables, a modal-adaptive prospectivity model is built, which allows to adapt different data availability and geological process. The resulting prospective areas of high potential not only correspond to the areas of known manganese deposits but also provide a number of favorable targets in the region for future mineral exploration.展开更多
By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteri...By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteries.At present,it is generally believed the formation of an effective interfacial film on the surface of the anode electrode is the leading factor in reducing the dissolution of TMIs and prevent TMIs from being embedded in the electrode.It ignores the influence of the solvation structures in the electrolyte system with different composition,and is not conducive to the design of the electrolyte formulation from the perspective of changing the concentration and the preferred solvent to inhibit the degradation of battery performance caused by TMIs deposition.In this work,by analyzing the special solvation structures of the high-concentra tion electrolyte,we study the main reason why high-concentration electrolyte inhibits the destructive effect of Mn(Ⅱ) on the electrochemical performance of LIBs.By combining the potentialresolved in-situ electrochemical impedance spectroscopy technology(PRIs-EIS) and density functional theory(DFT) calculation,we find that Mn(Ⅱ) mainly exists in the form of contact ions pairs(CIPs) and aggregates(AGGs) in high-concentration electrolyte.These solvation structures can reduce the destructive effect of Mn(Ⅱ) on battery performance from two aspects:on the one hand,it can rise the lowest unoccupied orbital(LUMO) value of the solvation structures of Mn(Ⅱ),thereby reducing the chance of its reduction;on the other hand,the decrease of Mn2+ions reduction can reduce the deposition of metallic manganese in the solid electrolyte interphase(SEI),thereby avoiding the continuous growth of the SEI.This study can be provided inspiration for the design of electrolytes to inhibit the destructive effect of TMls on LIBs.展开更多
One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn O...One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn ODs)are located in the southwest Sinai microplate,Egypt.These deposits are confined with the Um Bogma Formation(UBF)and the reserves of this region are relatively small.In this study,optical and radar data are used in a new challenge as an attempt to reach the closest controls and setting of Mn ODs.Moreover,Frequency Ratio(FR)and Logistic Regression(LogR)predictive models are applied to integrate different geospatial thematic maps,to predict new potential resource zones for increasing the ranges of mining quarries.Landsat8 OLI,Sentinel-2A Multi Spectral Instrument and Radar(Sentinel-1B)data are combined for mapping Mn ODs locations and their relationship with geological structures and the surrounding rocks.Band ratio,Principal and Independent Component Analysis techniques and four classification algorithms were implemented to the optical’VNIR and SWIR bands.Unusually,the interferometric processing steps for Sentinel-1 data were made for understanding the tectonic features in the area.The FR and LogR models are validated during fieldwork with known Mn ODs locations.Results indicate that processed images are capable of differentiation of UBF which broadly distributed in the central and southern parts of the area.Mn ODs possibly formed by thermal events that attributed to paleo-volcanic events before the rift stage.The high accuracy of LogR model(0.902)suggests that high Mn ODs potential zones are identified within the intersected fault zones near granitic units.This integration is recommended for discriminating hydrothermally Mn ODs in other arid geographic regions.展开更多
Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric aci...Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric acid. Furthermore the surface texture was modified by increase of the roughness. In particular after treatment with the oxidizing nitric acid, in comparison to the H2SO4 or ultra-sonic treated samples,craters and edges are dominating the surface structures. Manganese oxide was deposited on the multiwalled carbon nanotubes by precipitation mechanism. Various manganese oxides are formed during the deposition process. The samples were characterized by elemental analysis, microscopy, thermal analysis,Raman spectroscopy, and by the zeta potential as well as X-ray diffraction measurements. It was shown that the deposited manganese oxides are stabilized rather by surface texture of the multi-walled carbon nanotubes than by created functional groups.展开更多
Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Br...Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Brunner-Emmett-Teller-N2 adsorption-desorption for sur- face area, temperature programmed desorption of NH3 and n-butyl amine back titration methods for surface acidity, powder X-ray diffraction for textural properties, and Fourier transform infrared spectroscopy for the anionic radicals. The catalytic activity has been determined under heterogeneous conditions in the condensation reaction between o-phenylenediamine and benzil. The product purity is checked by thin-layer chromatography and melting point. The products are also analysed by LC-MS and 1H-NMR techniques. The yields of the products have been found to be good and catalysts exhibited excellent recyclability. The effect of changing the reaction para- meters such as temperature, reaction time, amount of the catalyst, nature of solvent and molar ratio of reactants on the yield of the product has been studied. The surface acidity of the catalysts plays an important role in activating the reaction.展开更多
基金Project(41663006)supported by the National Natural Science Foundation of ChinaProject(1212011220725)supported by the Geological Survey Project of the China Geological Survey
文摘The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.
基金supported by the Natural Science Foundation of China(NSFC No.41376080)the 12th Five-Year Plan project of the State Key Laboratory of Ore-deposit Geochemistry,Chinese Academy of Sciences(SKLODG-ZY125-08)
文摘The Dounan manganese deposit is a typical large-scale marine sedimentary manganese deposit of the Middle Triassic in China. The metallogenic environment and change process directly dictate the migration, enrichment, and precipitation of Mn. To better understand its metallogenetic environment, a detailed study was undertaken involving field observation, mineralogical and geochemical and M?ssbauer spectroscopic analyses. The major findings are as follows:(1) Lithofacies paleogeography, sedimentary structural characteristics, and geochemical indexes indicate that the deposits were formed in an epicontinental marine sedimentary basin environment of normal salinity;(2) there were three ore phases including Mn oxides, Mn carbonates, and mixed Mn ores. The ore minerals found were braunite, manganite, Ca-rhodochrosite, manganocalcite, and kutnahorite. Petrographic and mineralogical information indicates that the metallogenic environment was a weakly alkaline and weakly oxidized to weakly reduced environment, and the mineralization occurred near the redox interface;(3) the V/(V + Ni)ratios, δCe and Fe^(2+)/Fe^(3+) found in profiles of Baigu and Gake ore sections show that the redox conditions of the ore-forming environment were continuously changing; and(4) three Fe species, α-Fe_2O_3, para-Fe^(3+), and para-Fe^(2+),were found in hematite and clay mineral samples using M?ssbauer spectrum analysis. The presence and distribution of these Fe species indicate that the deposit was formed in a typical sedimentary environment during the mineralization process. In summary, our study showed that redox was a key factor controlling the mineralization of the Dounan manganese deposit. Our results have led us to the conclusion that transgression and regression caused fluctuations in sea level, which in turn caused the change of the redox environment. M?ssbauer spectroscopy is an effective tool for studying the redox conditions of the paleoenvironment in which sedimentary manganese deposits were formed.
文摘In 2016,the Geological Brigade No.103 of Guizhou Geology and Mineral Exploration and Development Bureau discovered two super-large manganese deposits at Pujue and Taoziping,in Songtao County,Guizhou Province(Fig.1).The Pujue manganese deposit has191.59 million tons of proven(332+333)class ore reserves,including 35.54 million tons of 332 class and
基金Funded by the National Natural Science Foundation of China(Nos.21561016,21661015)Jiangxi Provincial Science&Technology Program(Nos.20133BBE50010,20142BDH80020,and 20161BBE50052)Science&Technology Program of Jiangxi Provincial Education Bureau(No.GJJ150775)
文摘The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41772349,41972309,41472301,41772348)supported by the National Natural Science Foundation of China。
文摘While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geological factors, the complexity of geological process and the asymmetry of geo-information. In this work, the manganese potential mapping for further exploration targeting is implemented via spatial analysis and modal-adaptive prospectivity modeling. On the basis of targeting criteria developed by the mineral system approach, the spatial analysis is leveraged to extract the predictor variables to identify features of the geological process. Specifically, a metallogenic field analysis approach is proposed to extract metallogenic information that quantifies the regional impacts of the synsedimentary faults and sedimentary basins. In the integration of the extracted predictor variables, a modal-adaptive prospectivity model is built, which allows to adapt different data availability and geological process. The resulting prospective areas of high potential not only correspond to the areas of known manganese deposits but also provide a number of favorable targets in the region for future mineral exploration.
基金supported by the Natural Science Foundation of Gansu Province for Youths(21JR7RA254)the Gansu Provincial Department of Education: Innovation Fund Project(2022A-029)+1 种基金the Major Special Fund of Gansu Province(21ZD4GA031)the Lanzhou University of Technology Hongliu First-class Discipline Construction Program and Gansu Province Central Government Guided Local Science and Technology Development Fund ProjectIndustrialization of Automotive Low-Temperature Lithium-ion Battery Manufacturing Technology Achievements。
文摘By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteries.At present,it is generally believed the formation of an effective interfacial film on the surface of the anode electrode is the leading factor in reducing the dissolution of TMIs and prevent TMIs from being embedded in the electrode.It ignores the influence of the solvation structures in the electrolyte system with different composition,and is not conducive to the design of the electrolyte formulation from the perspective of changing the concentration and the preferred solvent to inhibit the degradation of battery performance caused by TMIs deposition.In this work,by analyzing the special solvation structures of the high-concentra tion electrolyte,we study the main reason why high-concentration electrolyte inhibits the destructive effect of Mn(Ⅱ) on the electrochemical performance of LIBs.By combining the potentialresolved in-situ electrochemical impedance spectroscopy technology(PRIs-EIS) and density functional theory(DFT) calculation,we find that Mn(Ⅱ) mainly exists in the form of contact ions pairs(CIPs) and aggregates(AGGs) in high-concentration electrolyte.These solvation structures can reduce the destructive effect of Mn(Ⅱ) on battery performance from two aspects:on the one hand,it can rise the lowest unoccupied orbital(LUMO) value of the solvation structures of Mn(Ⅱ),thereby reducing the chance of its reduction;on the other hand,the decrease of Mn2+ions reduction can reduce the deposition of metallic manganese in the solid electrolyte interphase(SEI),thereby avoiding the continuous growth of the SEI.This study can be provided inspiration for the design of electrolytes to inhibit the destructive effect of TMls on LIBs.
文摘One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn ODs)are located in the southwest Sinai microplate,Egypt.These deposits are confined with the Um Bogma Formation(UBF)and the reserves of this region are relatively small.In this study,optical and radar data are used in a new challenge as an attempt to reach the closest controls and setting of Mn ODs.Moreover,Frequency Ratio(FR)and Logistic Regression(LogR)predictive models are applied to integrate different geospatial thematic maps,to predict new potential resource zones for increasing the ranges of mining quarries.Landsat8 OLI,Sentinel-2A Multi Spectral Instrument and Radar(Sentinel-1B)data are combined for mapping Mn ODs locations and their relationship with geological structures and the surrounding rocks.Band ratio,Principal and Independent Component Analysis techniques and four classification algorithms were implemented to the optical’VNIR and SWIR bands.Unusually,the interferometric processing steps for Sentinel-1 data were made for understanding the tectonic features in the area.The FR and LogR models are validated during fieldwork with known Mn ODs locations.Results indicate that processed images are capable of differentiation of UBF which broadly distributed in the central and southern parts of the area.Mn ODs possibly formed by thermal events that attributed to paleo-volcanic events before the rift stage.The high accuracy of LogR model(0.902)suggests that high Mn ODs potential zones are identified within the intersected fault zones near granitic units.This integration is recommended for discriminating hydrothermally Mn ODs in other arid geographic regions.
文摘Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric acid. Furthermore the surface texture was modified by increase of the roughness. In particular after treatment with the oxidizing nitric acid, in comparison to the H2SO4 or ultra-sonic treated samples,craters and edges are dominating the surface structures. Manganese oxide was deposited on the multiwalled carbon nanotubes by precipitation mechanism. Various manganese oxides are formed during the deposition process. The samples were characterized by elemental analysis, microscopy, thermal analysis,Raman spectroscopy, and by the zeta potential as well as X-ray diffraction measurements. It was shown that the deposited manganese oxides are stabilized rather by surface texture of the multi-walled carbon nanotubes than by created functional groups.
文摘Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Brunner-Emmett-Teller-N2 adsorption-desorption for sur- face area, temperature programmed desorption of NH3 and n-butyl amine back titration methods for surface acidity, powder X-ray diffraction for textural properties, and Fourier transform infrared spectroscopy for the anionic radicals. The catalytic activity has been determined under heterogeneous conditions in the condensation reaction between o-phenylenediamine and benzil. The product purity is checked by thin-layer chromatography and melting point. The products are also analysed by LC-MS and 1H-NMR techniques. The yields of the products have been found to be good and catalysts exhibited excellent recyclability. The effect of changing the reaction para- meters such as temperature, reaction time, amount of the catalyst, nature of solvent and molar ratio of reactants on the yield of the product has been studied. The surface acidity of the catalysts plays an important role in activating the reaction.