期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Mechanism of Capacity Fading Caused by Mn(Ⅱ)Deposition on Anodes for Spinel Lithium Manganese Oxide Cell 被引量:7
1
作者 陈海辉 MA Tianyi +2 位作者 ZENG Yingying GUO Xiuyan 邱新平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期1-10,共10页
The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the meta... The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature. 展开更多
关键词 capacity fade manganese deposition lithium manganese oxide core-shell structure
下载PDF
The metallogenic environment of the Dounan manganese deposit,Southeast Yunnan, China: evidence from geochemistry and Mössbauer spectroscopic 被引量:1
2
作者 Jianbing Duan Yazhou Fu +2 位作者 Zhengwei Zhang Xiangxian Ma Jiafei Xiao 《Acta Geochimica》 EI CAS CSCD 2019年第1期78-94,共17页
The Dounan manganese deposit is a typical large-scale marine sedimentary manganese deposit of the Middle Triassic in China. The metallogenic environment and change process directly dictate the migration, enrichment, a... The Dounan manganese deposit is a typical large-scale marine sedimentary manganese deposit of the Middle Triassic in China. The metallogenic environment and change process directly dictate the migration, enrichment, and precipitation of Mn. To better understand its metallogenetic environment, a detailed study was undertaken involving field observation, mineralogical and geochemical and M?ssbauer spectroscopic analyses. The major findings are as follows:(1) Lithofacies paleogeography, sedimentary structural characteristics, and geochemical indexes indicate that the deposits were formed in an epicontinental marine sedimentary basin environment of normal salinity;(2) there were three ore phases including Mn oxides, Mn carbonates, and mixed Mn ores. The ore minerals found were braunite, manganite, Ca-rhodochrosite, manganocalcite, and kutnahorite. Petrographic and mineralogical information indicates that the metallogenic environment was a weakly alkaline and weakly oxidized to weakly reduced environment, and the mineralization occurred near the redox interface;(3) the V/(V + Ni)ratios, δCe and Fe^(2+)/Fe^(3+) found in profiles of Baigu and Gake ore sections show that the redox conditions of the ore-forming environment were continuously changing; and(4) three Fe species, α-Fe_2O_3, para-Fe^(3+), and para-Fe^(2+),were found in hematite and clay mineral samples using M?ssbauer spectrum analysis. The presence and distribution of these Fe species indicate that the deposit was formed in a typical sedimentary environment during the mineralization process. In summary, our study showed that redox was a key factor controlling the mineralization of the Dounan manganese deposit. Our results have led us to the conclusion that transgression and regression caused fluctuations in sea level, which in turn caused the change of the redox environment. M?ssbauer spectroscopy is an effective tool for studying the redox conditions of the paleoenvironment in which sedimentary manganese deposits were formed. 展开更多
关键词 Dounan manganese deposit Metallogenetic environment Mössbauer spectroscopy GEOCHEMISTRY
下载PDF
Super-Large Manganese Deposits Have Been Discovered at Pujue and Taoziping,Songtao County in Guizhou Province
3
作者 HAO Ziguo FEI Hongcai +1 位作者 HAO Qingqing LIU Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期343-344,共2页
In 2016,the Geological Brigade No.103 of Guizhou Geology and Mineral Exploration and Development Bureau discovered two super-large manganese deposits at Pujue and Taoziping,in Songtao County,Guizhou Province(Fig.1).... In 2016,the Geological Brigade No.103 of Guizhou Geology and Mineral Exploration and Development Bureau discovered two super-large manganese deposits at Pujue and Taoziping,in Songtao County,Guizhou Province(Fig.1).The Pujue manganese deposit has191.59 million tons of proven(332+333)class ore reserves,including 35.54 million tons of 332 class and 展开更多
关键词 Super-Large manganese Deposits Have Been Discovered at Pujue and Taoziping Songtao County in Guizhou Province
下载PDF
Mechanism of high-concentration electrolyte inhibiting the destructive effect of Mn(Ⅱ)on the performance of lithium-ion batteries 被引量:1
4
作者 Xiaoling Cui Jinlong Sun +10 位作者 Dongni Zhao Jingjing Zhang Jie Wang Hong Dong Peng Wang Junwei Zhang Shumin Wu Linhu Song Ningshuang Zhang Chunlei Li Shiyou Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期381-392,I0011,共13页
By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteri... By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteries.At present,it is generally believed the formation of an effective interfacial film on the surface of the anode electrode is the leading factor in reducing the dissolution of TMIs and prevent TMIs from being embedded in the electrode.It ignores the influence of the solvation structures in the electrolyte system with different composition,and is not conducive to the design of the electrolyte formulation from the perspective of changing the concentration and the preferred solvent to inhibit the degradation of battery performance caused by TMIs deposition.In this work,by analyzing the special solvation structures of the high-concentra tion electrolyte,we study the main reason why high-concentration electrolyte inhibits the destructive effect of Mn(Ⅱ) on the electrochemical performance of LIBs.By combining the potentialresolved in-situ electrochemical impedance spectroscopy technology(PRIs-EIS) and density functional theory(DFT) calculation,we find that Mn(Ⅱ) mainly exists in the form of contact ions pairs(CIPs) and aggregates(AGGs) in high-concentration electrolyte.These solvation structures can reduce the destructive effect of Mn(Ⅱ) on battery performance from two aspects:on the one hand,it can rise the lowest unoccupied orbital(LUMO) value of the solvation structures of Mn(Ⅱ),thereby reducing the chance of its reduction;on the other hand,the decrease of Mn2+ions reduction can reduce the deposition of metallic manganese in the solid electrolyte interphase(SEI),thereby avoiding the continuous growth of the SEI.This study can be provided inspiration for the design of electrolytes to inhibit the destructive effect of TMls on LIBs. 展开更多
关键词 Lithium-ion battery High-concentration electrolyte manganese deposition Solvation structures
下载PDF
Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: Influences of pre-treatment procedures 被引量:2
5
作者 Saskia Buller Marius Heise-Podleska +2 位作者 Norbert Pfander Marc Willinger Robert Schlogl 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期263-269,共7页
Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric aci... Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric acid. Furthermore the surface texture was modified by increase of the roughness. In particular after treatment with the oxidizing nitric acid, in comparison to the H2SO4 or ultra-sonic treated samples,craters and edges are dominating the surface structures. Manganese oxide was deposited on the multiwalled carbon nanotubes by precipitation mechanism. Various manganese oxides are formed during the deposition process. The samples were characterized by elemental analysis, microscopy, thermal analysis,Raman spectroscopy, and by the zeta potential as well as X-ray diffraction measurements. It was shown that the deposited manganese oxides are stabilized rather by surface texture of the multi-walled carbon nanotubes than by created functional groups. 展开更多
关键词 Multi-walled carbon nanotubes(MWCNT) Surface modification Raman spectroscopy manganese deposition Zeta potential
下载PDF
Geological Controls and Prospectivity Mapping for Manganese Ore Deposits Using Predictive Modeling Comparison:An Integration of Outcrop and Remote Sensing Data,Sinai Microplate,Egypt
6
作者 Sara Zamzam 《Journal of Earth Science》 SCIE CAS CSCD 2023年第2期588-608,共21页
One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn O... One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn ODs)are located in the southwest Sinai microplate,Egypt.These deposits are confined with the Um Bogma Formation(UBF)and the reserves of this region are relatively small.In this study,optical and radar data are used in a new challenge as an attempt to reach the closest controls and setting of Mn ODs.Moreover,Frequency Ratio(FR)and Logistic Regression(LogR)predictive models are applied to integrate different geospatial thematic maps,to predict new potential resource zones for increasing the ranges of mining quarries.Landsat8 OLI,Sentinel-2A Multi Spectral Instrument and Radar(Sentinel-1B)data are combined for mapping Mn ODs locations and their relationship with geological structures and the surrounding rocks.Band ratio,Principal and Independent Component Analysis techniques and four classification algorithms were implemented to the optical’VNIR and SWIR bands.Unusually,the interferometric processing steps for Sentinel-1 data were made for understanding the tectonic features in the area.The FR and LogR models are validated during fieldwork with known Mn ODs locations.Results indicate that processed images are capable of differentiation of UBF which broadly distributed in the central and southern parts of the area.Mn ODs possibly formed by thermal events that attributed to paleo-volcanic events before the rift stage.The high accuracy of LogR model(0.902)suggests that high Mn ODs potential zones are identified within the intersected fault zones near granitic units.This integration is recommended for discriminating hydrothermally Mn ODs in other arid geographic regions. 展开更多
关键词 manganese deposits Abu Zenima Landsat8 oli sentinel data fault zones predictive modeling remote sensing
原文传递
Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines 被引量:2
7
作者 Rekha M. Kathyayini H Nagaraju N 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2013年第4期415-421,共7页
Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Br... Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Brunner-Emmett-Teller-N2 adsorption-desorption for sur- face area, temperature programmed desorption of NH3 and n-butyl amine back titration methods for surface acidity, powder X-ray diffraction for textural properties, and Fourier transform infrared spectroscopy for the anionic radicals. The catalytic activity has been determined under heterogeneous conditions in the condensation reaction between o-phenylenediamine and benzil. The product purity is checked by thin-layer chromatography and melting point. The products are also analysed by LC-MS and 1H-NMR techniques. The yields of the products have been found to be good and catalysts exhibited excellent recyclability. The effect of changing the reaction para- meters such as temperature, reaction time, amount of the catalyst, nature of solvent and molar ratio of reactants on the yield of the product has been studied. The surface acidity of the catalysts plays an important role in activating the reaction. 展开更多
关键词 ALUMINA manganese oxide deposited onalumina quinoxaline synthesis
原文传递
A facile one-step approach to hierarchically assembled core-shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage 被引量:3
8
作者 Goli Nagaraju Yeong Hwan Ko +2 位作者 Sung Min Cha Sang Hyuk Im Jae Su Yu 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1507-1522,共16页
Hierarchical core-shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical depositio... Hierarchical core-shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical deposition method. Under an external cathodic voltage of -2.0 V for 30 min, hierarchical core-shell-like MnO2-NS-decorated MnO2 HNPAs (MnO2 NSs@MnO2 HNPAs) were uniformly grown on CC with reliable adhesion. The phase purity and morphological properties of the samples were characterized by various physicochemical techniques. At a constant external cathodic voltage, growth of MnO2 NSs@MnO2 HNPAs on CC was carried for different time periods. When utilized as a flexible, robust, and binder-free electrode for pseudocapacitors, the hierarchical core-shell-like MnO2 NSs@MnO2 HNPAs on CC showed clearly enhanced electrochemical properties in 1 M Na2SO4 electrolyte solution. The results indicate that the MnO2 NSs@MnO2 HNPAs on CC have a maximum specific capacitance of 244.54 F/g at a current density of 0.5 A/g with excellent cycling stability compared to that of bare MnO2 HNPAs on CC (112.1 F/g at 0.5 A/g current density). We believe that the superior charge storage performance of the pseudocapacitive electrode can be mainly attributed to the hierarchical MnO2 NSs@MnO2 HNPAs building blocks that have a large specific surface area, offering additional electroactive sites for efficient electrochemical reactions. The facile and single-step approach to growth of hierarchical pseudocapacitive materials on textile based electrodes opens up the possibility for the fabrication of high-performance flexible energy storage devices. 展开更多
关键词 manganese oxide hierarchical structures carbon cloth electrochemical deposition energy storage properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部