Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The p...Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.展开更多
An axial symmetry finite element model coupled with electricity-thermal effect was developed to study the temperature field distribution in process of the flash butt welding (FBW) of frog highmanganese steel. The in...An axial symmetry finite element model coupled with electricity-thermal effect was developed to study the temperature field distribution in process of the flash butt welding (FBW) of frog highmanganese steel. The influence of temperature dependent material properties and the contact resistance were taken into account in FEM 'simulation. Meanwhile, the lost materials due to .splutter was resolved by using birth and death element. The result of analyzing data shows that the moddel in the FBW flashing is reasonable and feasible, and can exactly simulate the temperature field distribution. The modeling provides reference for analysis of welding technologies on the temperature field of high-manganese steel in FBW.展开更多
The abrasive wear behaviour of austenitic medium manganese steels was studied under weak corrosion-abrasive wear simulating the liner plate in wet metallic ore bail mill under non-severe impact-loading working conditi...The abrasive wear behaviour of austenitic medium manganese steels was studied under weak corrosion-abrasive wear simulating the liner plate in wet metallic ore bail mill under non-severe impact-loading working condition. Results show that the work-hardening mechanism and the wear resistance of high carbon austenitic medium manganese steels differ from those of medium carbon austenitic medium manganese steel. Under non-severe impact and weak corrosion-abrasive wear,the wear resistances of high carbon and medium carbon austenitic medium manganese steels are 50-90% and 20-40% higher than that of Hadfield steel respectively.展开更多
Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years...Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years.Unfortunately,research results are controversial,and no consensus has been achieved regarding the topic.Here,we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS,including the morphology and stability of austenite,the feature of the phase interface,and the deformation parameters.Then,we propose a universal mechanism to explain the conflicting experimental results.We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation.Meanwhile,the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite.Strain-induced martensitic transformation,influenced by the mechanical stability of austenite grain and deformation parameters,should not be the intrinsic cause of plastic instability.However,it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations,as well as the interaction between the interstitial atoms and dislocations in austenite grains.展开更多
Three forged low-density high manganese steels Mn28Al10,Mn28Al8 and Mn20Al10 were used as experimental materials in this study.The forged microstructure and external oxidation characteristics at 1323 K and 1373 K for ...Three forged low-density high manganese steels Mn28Al10,Mn28Al8 and Mn20Al10 were used as experimental materials in this study.The forged microstructure and external oxidation characteristics at 1323 K and 1373 K for 5-25 h in air were investigated by microstructural observation and X-ray diffraction(XRD)technique.The phase compositions and abundance in the forged and oxidized samples were quantitatively obtained by Rietveld method on the basis of XRD pattern analysis.The results showed that an austenitic microstructure formed in steels Mn28Al10 and Mn28Al8,and 18.02 wt%ferrite could be found in Mn20Al10.The relative amount of ~5.28 wt%-carbide(Fe_3AlC_(0.5))in Mn28Al10 was far greater than that in Mn28Al8 and Mn20Al10.The oxidation kinetics of forged steels oxidized at 1323 K for 5-25 h had two-stage parabolic rate laws;and the oxidation rate of the first stage was lower than that of the second stage.When they were oxidized at 1373 K for 5-25 h,the oxidation kinetics followed only a parabolic law and the oxidation rates were respectively greater than those at 1323 K for 5-25 h.When they were oxidized at 1323 K for 25 h,detached external scales contained Fe_2MnO_4and-Fe_2O_3oxides.-Al_2O_3and(Fe,Mn)_2O_3oxides could only be indexed in steels Mn28Al8 and Mn28Al10,respectively.When they were oxidized at 1373 K for 25 h,Fe_2MnO_4,Fe_3O_4,-Fe_2O_3 and-Al_2O_3oxides could all be indexed in the external detached scales.The main phase of detached external scales was Fe_2MnO_4;and the relative amount of-Al_2O_3in steel Mn28Al8 was higher than that in steels Mn28Al10 and Mn20Al.The external oxidation layers of these three forged steels oxidized at 1323 K and 1373 K for 25 h were essentially followed the sequence of-Al_2O_3,Fe_2MnO_4,Fe_3O_4,FeMnO_3,and Fe_2O_3from the substrate to the outside surface.The forged Mn28Al10 steel with austenitic microstructure and a certain amount of-carbide(~5.28 wt%in the present work)possessed a better combination of strength,ductility,specific strength,and oxidation rate when compared to that of the forged Mn28Al8 and Mn20Al10 steels.展开更多
Transformation texture is normally different to deformation and recrystallization textures,thus influencing materials properties differently.As deformation and recrystallization are often inseparable to transformation...Transformation texture is normally different to deformation and recrystallization textures,thus influencing materials properties differently.As deformation and recrystallization are often inseparable to transformation in materials which shows a variety in types such as diffusional or non-diffusional transformations,different phenomena or rules of strengthening transformation textures occur.This paper summarizes the complicated phenomena and rules by comparison of a lot of authors’published and unpublished data collected from mainly electrical steels,high manganese steels and pure titanium sheets.Three kinds of influencing deformation are identified,namely the dynamic transformation with concurrent deformation and transformation,the transformation preceded by deformation and recrystallization and the surface effect induced transformation,and the textures related with them develop in different mechanisms.It is stressed that surface effect induced transformation is particularly effective to enhance transformation texture.It is also shown that the materials properties are also improved by controlled transformation textures,in particular in electrical steels.It is hoped that these phenomena and processing techniques are beneficial to the establishment of transformation texture theory and property improvement in practice.展开更多
High manganese steels can damage the differential thermal analysis (DTA) instrument due to the manganese evaporation during high temperature experiments. After analyzing the relationship between residual oxygen and ...High manganese steels can damage the differential thermal analysis (DTA) instrument due to the manganese evaporation during high temperature experiments. After analyzing the relationship between residual oxygen and manganese evaporation, tanta- lum metal was employed to modify the crucible of DTA, and zirconium getter together with strict gas purification measures were applied to control the volatilization of manganese. By these modifications, problems of thermocouple damage and DTA instrument contamination were successfully resolved. Cobalt samples were adopted to calibrate the accuracy of DTA instruments under the same trial condition of high manganese steel samples, and the detection error was confirmed to be less than 1 ℃. Liquidus and soli- dus temperatures of high Mn steels were measured by improved DTA method. It was found that the liquidus temperatures of sam- ples tested by experiments increased linearly with the heating rates. To eliminate the effects of the heating rate, equilibrium liquidus temperature was determined by fitting the liquidus temperatures at different heating rates, and referred as real liquidus temperature. No clear relationship between solidus temperatures and heating rates was found, and the solidus temperature was finally set as the average value of several experimental data.展开更多
Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit...Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.展开更多
High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Re...High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. .展开更多
In order to investigate the distribution of Cu and Mg, and the effect of Cu on the microstructure of steels, manganese steels containing various Cu contents were annealed at 1260, 1100 and 1000℃, respectively, for I ...In order to investigate the distribution of Cu and Mg, and the effect of Cu on the microstructure of steels, manganese steels containing various Cu contents were annealed at 1260, 1100 and 1000℃, respectively, for I h and subsequently cooled to room temperature in the furnace to simulate the pre-rolling anneal. The results indicate that Cu is not microscopically segregated in the annealed steels. The scanning electron microscopy (SEM) observation shows that the main microstructure consist of ferrite and pearlite; the percentage of pearlite in the steels increases with increasing Cu content. The grain size reduces with the decrease of the annealing temperature. The results of energy dispersive X-ray analysis (EDXA) suggest that Cu content in pearlite is higher than that in ferrite, demonstrating that the microstructure-segregation of Cu occurred. However, the cast specimens show that Cu content in MnS and S-rich phases is high. In addition, Cu of 0.2%-0.4% could improve the distribution of MnS and S-rich inclusions. The optimal Cu content in steels and the optimal annealing temperature between 1100-1200℃ were determined.展开更多
The BG110E high-strength expansion pipe was developed using medium manganese steel and subjected to a two-phase zone heat treatment process.Mechanical properties and microstructure analysis results have proven that th...The BG110E high-strength expansion pipe was developed using medium manganese steel and subjected to a two-phase zone heat treatment process.Mechanical properties and microstructure analysis results have proven that the BG110E expansion pipe exhibits uniform elongation of more than 19%.Moreover,after undergoing expan-sion deformation,its strength,toughness,and plasticity are found to meet the stringent requirements of the P110 pipe.The microstructure of this high-strength expansion pipe,which has a strength of 110 ksi(1 ksi=6.895 MPa),consists of tempered martensite,ferrite,retained austenite,and granular bainite.The propotion of retained austenite reaches up to 12%,ensuring high plasticity and the occurrence of the transformation-induced plasticity effect during the deformation process.Consequently,it enhances the coordinated deformation ability between different phases,which significantly improves the internal yield pressure of the BG110E high-strength expansion pipe in turn.展开更多
The behaviors of La and Ce on gram boundaries in carbon manganese clean steel were investigated by high-reso- lution transmission elecetron microscope (HRTEM), scanning elecetron microscopy(SEM ), energy dispersiv...The behaviors of La and Ce on gram boundaries in carbon manganese clean steel were investigated by high-reso- lution transmission elecetron microscope (HRTEM), scanning elecetron microscopy(SEM ), energy dispersive spectrometer (EDS) and X-ray diffraction(XRD) analysis. The existing forms of rare earths (RE) in clean steel were as follows: dissolved in sohd solution, forming inclusion or second phase containing RE (RE-Fe-P, La-P, Fe-La eutectic and Fe-Ce phase). The dissolved La or Ce segregated at grain boundaries. The segregation of both S and P at gram boundaries was reduced with suitable RE content. The impact toughness of the steel was improved obviously. La and Ce had effecets on purifying molten steel and modifying inclusions in clean steel, whereas with excessive La or Ce, La-Fe-P, La-P and Fe-La eutecetic phase or Ce-Fe-P and Fe-Ce intermetallic compound would form along grain boundaries, causing the impact energy to decrease significantly.展开更多
Critical cooling rate to avoid carbide precipitation during quenching of austenitic manganese steel was investigated by means of optical microscopy,image analyzer and numerical analysis.An efficient heat treatment ana...Critical cooling rate to avoid carbide precipitation during quenching of austenitic manganese steel was investigated by means of optical microscopy,image analyzer and numerical analysis.An efficient heat treatment analysis program including temperature-dependent material properties was developed for the prediction of cooling rate and probability of carbide precipitation during quenching by finite difference method.Time-dependent heat transfer coefficient was adopted to achieve more precise results.Area ratio of carbide precipitation was measured by image analyzer to determine the critical point of carbide precipitation.Temperature-dependent critical cooling rate at that point was calculated by the developed numerical program.Finally,the probability of carbide precipitation on the whole area of specimen can be predicted by the proposed numerical program and the numerical result of a specimen was compared with the experimental result.展开更多
Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimil...Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimilar steel. It are was known that it is not possible to the the rail of railroad directly to the cross- ing of railway track made from a steel containing about 14% of manganese (wt. ) because of so many differences between the two kinds of steels such as composition, microstructure,mechanical properties and weldability.A method was used to solve the problem by presetting an intermediate layer on each side of the joint and other special procedures were used.The result of test indicated that a good weld joint was obtained.展开更多
The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the i...The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion.展开更多
By calculation of thermodynamics,analysis of crystal structure and study of TEM and eletron probe,it is first discovered that SiO2 can be acted as one of the heterogeneous nu- clei for lamellar intergorowth eutectic(a...By calculation of thermodynamics,analysis of crystal structure and study of TEM and eletron probe,it is first discovered that SiO2 can be acted as one of the heterogeneous nu- clei for lamellar intergorowth eutectic(austenite and cementite)crystallizing in modified as-cast medium manganese steel.展开更多
The needle-like and network carbides in as-cast high carbon wear-resistant manganese steels will be nodularized and dispersed,by a large majority,in austenite aider modifying treatment with Mg system agents.The impact...The needle-like and network carbides in as-cast high carbon wear-resistant manganese steels will be nodularized and dispersed,by a large majority,in austenite aider modifying treatment with Mg system agents.The impact toughness of the steels is significantly improved and the hardness is also increased to a certain extent.As a result,the steels can be used in as-casted state without any heat treatment and their wear resistance can be greatly enhanced.展开更多
The mathematic calculation on two--body wear of austenitic manganese steel has been performed by means of the elastic contact theory,stress interferometer and SEM.Stress distribution in contacted area was calculated a...The mathematic calculation on two--body wear of austenitic manganese steel has been performed by means of the elastic contact theory,stress interferometer and SEM.Stress distribution in contacted area was calculated and the mechanism on two--body wear has been investigated through numerical quadrature.Results show that two--body wear is mainly plowing wear the cracks of abrasive dust originates from the region between 0.2αand 0.5α(αis radius of contacted round).Driving force to make crack extension along y axis is T_(yzmax)and extension direction is 45°with horizon.Driving forces to make crack extension along x axis is alternativeσ_x and T_(yzmax),the direction of crack extension is 37°with horizon.展开更多
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t...The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.展开更多
Effects of C and Mn contents on the deformation-enhanced ferrite transformation (DEFT) in low carbon (Mn) steels have been investigated by hot compression. The microstructures of 2-4μm ultra-fine equiaxed ferrite...Effects of C and Mn contents on the deformation-enhanced ferrite transformation (DEFT) in low carbon (Mn) steels have been investigated by hot compression. The microstructures of 2-4μm ultra-fine equiaxed ferrite grains with minors distributed homogeneously can be obtained by DEFT in all the tested steels. The more pronounced refinement is achieved as the C or Mn content increasing because of the higher-density nucleating sites and lower growth rate. The effectiveness of C on the level of refinement is more obvious than that of Mn.展开更多
文摘Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.
文摘An axial symmetry finite element model coupled with electricity-thermal effect was developed to study the temperature field distribution in process of the flash butt welding (FBW) of frog highmanganese steel. The influence of temperature dependent material properties and the contact resistance were taken into account in FEM 'simulation. Meanwhile, the lost materials due to .splutter was resolved by using birth and death element. The result of analyzing data shows that the moddel in the FBW flashing is reasonable and feasible, and can exactly simulate the temperature field distribution. The modeling provides reference for analysis of welding technologies on the temperature field of high-manganese steel in FBW.
文摘The abrasive wear behaviour of austenitic medium manganese steels was studied under weak corrosion-abrasive wear simulating the liner plate in wet metallic ore bail mill under non-severe impact-loading working condition. Results show that the work-hardening mechanism and the wear resistance of high carbon austenitic medium manganese steels differ from those of medium carbon austenitic medium manganese steel. Under non-severe impact and weak corrosion-abrasive wear,the wear resistances of high carbon and medium carbon austenitic medium manganese steels are 50-90% and 20-40% higher than that of Hadfield steel respectively.
基金support from the National Natural Science Foundation of China(Nos.51831002,51904028,and 52233018)the Beijing Municipal Natural Science Foundation(No.2242048)the Fundamental Research Funds for the Central Universities,China(No.FRF-EYIT-23-08).
文摘Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years.Unfortunately,research results are controversial,and no consensus has been achieved regarding the topic.Here,we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS,including the morphology and stability of austenite,the feature of the phase interface,and the deformation parameters.Then,we propose a universal mechanism to explain the conflicting experimental results.We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation.Meanwhile,the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite.Strain-induced martensitic transformation,influenced by the mechanical stability of austenite grain and deformation parameters,should not be the intrinsic cause of plastic instability.However,it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations,as well as the interaction between the interstitial atoms and dislocations in austenite grains.
基金financially supported by the National Natural Science Foundation of China(Grant No.51674004)the Education Department of Anhui Province of China(No.KJ2016A104,KJ2017A805)
文摘Three forged low-density high manganese steels Mn28Al10,Mn28Al8 and Mn20Al10 were used as experimental materials in this study.The forged microstructure and external oxidation characteristics at 1323 K and 1373 K for 5-25 h in air were investigated by microstructural observation and X-ray diffraction(XRD)technique.The phase compositions and abundance in the forged and oxidized samples were quantitatively obtained by Rietveld method on the basis of XRD pattern analysis.The results showed that an austenitic microstructure formed in steels Mn28Al10 and Mn28Al8,and 18.02 wt%ferrite could be found in Mn20Al10.The relative amount of ~5.28 wt%-carbide(Fe_3AlC_(0.5))in Mn28Al10 was far greater than that in Mn28Al8 and Mn20Al10.The oxidation kinetics of forged steels oxidized at 1323 K for 5-25 h had two-stage parabolic rate laws;and the oxidation rate of the first stage was lower than that of the second stage.When they were oxidized at 1373 K for 5-25 h,the oxidation kinetics followed only a parabolic law and the oxidation rates were respectively greater than those at 1323 K for 5-25 h.When they were oxidized at 1323 K for 25 h,detached external scales contained Fe_2MnO_4and-Fe_2O_3oxides.-Al_2O_3and(Fe,Mn)_2O_3oxides could only be indexed in steels Mn28Al8 and Mn28Al10,respectively.When they were oxidized at 1373 K for 25 h,Fe_2MnO_4,Fe_3O_4,-Fe_2O_3 and-Al_2O_3oxides could all be indexed in the external detached scales.The main phase of detached external scales was Fe_2MnO_4;and the relative amount of-Al_2O_3in steel Mn28Al8 was higher than that in steels Mn28Al10 and Mn20Al.The external oxidation layers of these three forged steels oxidized at 1323 K and 1373 K for 25 h were essentially followed the sequence of-Al_2O_3,Fe_2MnO_4,Fe_3O_4,FeMnO_3,and Fe_2O_3from the substrate to the outside surface.The forged Mn28Al10 steel with austenitic microstructure and a certain amount of-carbide(~5.28 wt%in the present work)possessed a better combination of strength,ductility,specific strength,and oxidation rate when compared to that of the forged Mn28Al8 and Mn20Al10 steels.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51771024).
文摘Transformation texture is normally different to deformation and recrystallization textures,thus influencing materials properties differently.As deformation and recrystallization are often inseparable to transformation in materials which shows a variety in types such as diffusional or non-diffusional transformations,different phenomena or rules of strengthening transformation textures occur.This paper summarizes the complicated phenomena and rules by comparison of a lot of authors’published and unpublished data collected from mainly electrical steels,high manganese steels and pure titanium sheets.Three kinds of influencing deformation are identified,namely the dynamic transformation with concurrent deformation and transformation,the transformation preceded by deformation and recrystallization and the surface effect induced transformation,and the textures related with them develop in different mechanisms.It is stressed that surface effect induced transformation is particularly effective to enhance transformation texture.It is also shown that the materials properties are also improved by controlled transformation textures,in particular in electrical steels.It is hoped that these phenomena and processing techniques are beneficial to the establishment of transformation texture theory and property improvement in practice.
基金Sponsored by National Natural Science Foundation of China(51374023)
文摘High manganese steels can damage the differential thermal analysis (DTA) instrument due to the manganese evaporation during high temperature experiments. After analyzing the relationship between residual oxygen and manganese evaporation, tanta- lum metal was employed to modify the crucible of DTA, and zirconium getter together with strict gas purification measures were applied to control the volatilization of manganese. By these modifications, problems of thermocouple damage and DTA instrument contamination were successfully resolved. Cobalt samples were adopted to calibrate the accuracy of DTA instruments under the same trial condition of high manganese steel samples, and the detection error was confirmed to be less than 1 ℃. Liquidus and soli- dus temperatures of high Mn steels were measured by improved DTA method. It was found that the liquidus temperatures of sam- ples tested by experiments increased linearly with the heating rates. To eliminate the effects of the heating rate, equilibrium liquidus temperature was determined by fitting the liquidus temperatures at different heating rates, and referred as real liquidus temperature. No clear relationship between solidus temperatures and heating rates was found, and the solidus temperature was finally set as the average value of several experimental data.
基金the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.
文摘High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. .
基金the Major Program of National Natural Science Foundation of China (No. 50499336) National Basic Research Program of China (No. 2004CB619101).
文摘In order to investigate the distribution of Cu and Mg, and the effect of Cu on the microstructure of steels, manganese steels containing various Cu contents were annealed at 1260, 1100 and 1000℃, respectively, for I h and subsequently cooled to room temperature in the furnace to simulate the pre-rolling anneal. The results indicate that Cu is not microscopically segregated in the annealed steels. The scanning electron microscopy (SEM) observation shows that the main microstructure consist of ferrite and pearlite; the percentage of pearlite in the steels increases with increasing Cu content. The grain size reduces with the decrease of the annealing temperature. The results of energy dispersive X-ray analysis (EDXA) suggest that Cu content in pearlite is higher than that in ferrite, demonstrating that the microstructure-segregation of Cu occurred. However, the cast specimens show that Cu content in MnS and S-rich phases is high. In addition, Cu of 0.2%-0.4% could improve the distribution of MnS and S-rich inclusions. The optimal Cu content in steels and the optimal annealing temperature between 1100-1200℃ were determined.
文摘The BG110E high-strength expansion pipe was developed using medium manganese steel and subjected to a two-phase zone heat treatment process.Mechanical properties and microstructure analysis results have proven that the BG110E expansion pipe exhibits uniform elongation of more than 19%.Moreover,after undergoing expan-sion deformation,its strength,toughness,and plasticity are found to meet the stringent requirements of the P110 pipe.The microstructure of this high-strength expansion pipe,which has a strength of 110 ksi(1 ksi=6.895 MPa),consists of tempered martensite,ferrite,retained austenite,and granular bainite.The propotion of retained austenite reaches up to 12%,ensuring high plasticity and the occurrence of the transformation-induced plasticity effect during the deformation process.Consequently,it enhances the coordinated deformation ability between different phases,which significantly improves the internal yield pressure of the BG110E high-strength expansion pipe in turn.
基金Project supported by the Ministry of Science and Technology of China (2002BA315A-5)
文摘The behaviors of La and Ce on gram boundaries in carbon manganese clean steel were investigated by high-reso- lution transmission elecetron microscope (HRTEM), scanning elecetron microscopy(SEM ), energy dispersive spectrometer (EDS) and X-ray diffraction(XRD) analysis. The existing forms of rare earths (RE) in clean steel were as follows: dissolved in sohd solution, forming inclusion or second phase containing RE (RE-Fe-P, La-P, Fe-La eutectic and Fe-Ce phase). The dissolved La or Ce segregated at grain boundaries. The segregation of both S and P at gram boundaries was reduced with suitable RE content. The impact toughness of the steel was improved obviously. La and Ce had effecets on purifying molten steel and modifying inclusions in clean steel, whereas with excessive La or Ce, La-Fe-P, La-P and Fe-La eutecetic phase or Ce-Fe-P and Fe-Ce intermetallic compound would form along grain boundaries, causing the impact energy to decrease significantly.
文摘Critical cooling rate to avoid carbide precipitation during quenching of austenitic manganese steel was investigated by means of optical microscopy,image analyzer and numerical analysis.An efficient heat treatment analysis program including temperature-dependent material properties was developed for the prediction of cooling rate and probability of carbide precipitation during quenching by finite difference method.Time-dependent heat transfer coefficient was adopted to achieve more precise results.Area ratio of carbide precipitation was measured by image analyzer to determine the critical point of carbide precipitation.Temperature-dependent critical cooling rate at that point was calculated by the developed numerical program.Finally,the probability of carbide precipitation on the whole area of specimen can be predicted by the proposed numerical program and the numerical result of a specimen was compared with the experimental result.
文摘Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimilar steel. It are was known that it is not possible to the the rail of railroad directly to the cross- ing of railway track made from a steel containing about 14% of manganese (wt. ) because of so many differences between the two kinds of steels such as composition, microstructure,mechanical properties and weldability.A method was used to solve the problem by presetting an intermediate layer on each side of the joint and other special procedures were used.The result of test indicated that a good weld joint was obtained.
基金the Doctoral Authorization Point Foundation of Education Ministry of China(No.20040359004)the Major Project Foundation of Education Office of Anhui Province(No.KJ2007A060)
文摘The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion.
基金The projected was supported by National Natural Science Foundation of China
文摘By calculation of thermodynamics,analysis of crystal structure and study of TEM and eletron probe,it is first discovered that SiO2 can be acted as one of the heterogeneous nu- clei for lamellar intergorowth eutectic(austenite and cementite)crystallizing in modified as-cast medium manganese steel.
文摘The needle-like and network carbides in as-cast high carbon wear-resistant manganese steels will be nodularized and dispersed,by a large majority,in austenite aider modifying treatment with Mg system agents.The impact toughness of the steels is significantly improved and the hardness is also increased to a certain extent.As a result,the steels can be used in as-casted state without any heat treatment and their wear resistance can be greatly enhanced.
文摘The mathematic calculation on two--body wear of austenitic manganese steel has been performed by means of the elastic contact theory,stress interferometer and SEM.Stress distribution in contacted area was calculated and the mechanism on two--body wear has been investigated through numerical quadrature.Results show that two--body wear is mainly plowing wear the cracks of abrasive dust originates from the region between 0.2αand 0.5α(αis radius of contacted round).Driving force to make crack extension along y axis is T_(yzmax)and extension direction is 45°with horizon.Driving forces to make crack extension along x axis is alternativeσ_x and T_(yzmax),the direction of crack extension is 37°with horizon.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174020 and 51374018)the National High-Tech Research and Development Program of China (No. 2013AA031601)
文摘The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2001AA3 32020).
文摘Effects of C and Mn contents on the deformation-enhanced ferrite transformation (DEFT) in low carbon (Mn) steels have been investigated by hot compression. The microstructures of 2-4μm ultra-fine equiaxed ferrite grains with minors distributed homogeneously can be obtained by DEFT in all the tested steels. The more pronounced refinement is achieved as the C or Mn content increasing because of the higher-density nucleating sites and lower growth rate. The effectiveness of C on the level of refinement is more obvious than that of Mn.