The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching effic...The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10.展开更多
A series of Co3O4-CeO2 binary oxides with various Co/(Ce+Co)molar ratios were synthesized using a citric acid method,and their catalytic properties toward the total oxidation of propane were examined.The activities of...A series of Co3O4-CeO2 binary oxides with various Co/(Ce+Co)molar ratios were synthesized using a citric acid method,and their catalytic properties toward the total oxidation of propane were examined.The activities of the catalysts decrease in the order CoCeOx-70>CoCeOx-90>Co3O4>CoCeOx-50>CoCeOx-20>CeO2.CoCeOx-70(Co/(Ce+Co)=70% molar ratio)exhibits the highest catalytic activity toward the total oxidation of propane,of which the T90 is 310℃(GHSV=120000 mL h^-1 g^-1],which is 25℃ lower than that of pure Co3 O4.The enhancement of the catalytic performance of CoCeOx-70 is attributed to the strong interaction between CeO2 and Co3O4,the improvement of the low-temperature reducibility,and the increase in the number of active oxygen species.In-situ DRIFTS and reaction kinetics measurement reveal that Ce addition does not change the reaction mechanism,but promotes the adsorption and activation of propane on the catalyst surface.The addition of water vapor and CO2 in reactant gas has a negative effect on the propane conversion,and the catalyst is more sensitive to water vapor than to CO2.In addition,CoCeOx-70 exhibits excellent stability and reusability in water vapor and CO2 atmosphere.展开更多
Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of ex...Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.展开更多
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),...Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.展开更多
In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures...In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.展开更多
CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (...CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.展开更多
Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled inte...Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided.展开更多
Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2w...Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide.展开更多
Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor perfor...Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor performance due to CO poisoning of the leading-high cost anode catalyst.In line with this,we have successfully modified the morphological structure and composition of low cost cobalt based-metal oxides,MCo_2O_4(M = Zn and Ni),with the simple and noble use of polyvinyl pyrrolidone(PVP) as growth modifier and surface stabilizer during the synthesis of nanoparticles in our previous reports,which shown high electrocatalytic activity and strong stability.Due to the good performance of our PVP modified MCo_2O_4 towards pseudocapacitor and oxygen evolution reaction applications,we decided to extend our research study to methanol oxidation reaction.Remarkably,PVP modified Ni Co_2O_4 electrode directly grown on nickel foam substrate via a simple hydrothermal process exhibited better performance compared with PVP modified ZnCo_2O_4 and NiCo_2O_4 without PVP.It had obtained a remarkably low onset potential of 0.285 V and high current density of 280 m A cm^(-2),and shown great stability and high poison tolerance during a continuous CV cycling and Chronoamperometry test,which attained high efficiency of 86.86%and 98.52%,respectively.These positive results of PVP modified Ni Co_2O_4 electrode towards MOR might be attributed to its hierarchical 3 D nanostructures with highly mesoporous surface and large surface area which may have provided numerous electroactive sites,and the exceptional corrosion stability of Ni Co_2O_4 electrode in alkaline solution.展开更多
Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for a...Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.展开更多
This work studied CuO/CeO2-Co3O4 with wt% Ce:Co ratio 95:5 for selective CO oxidation with effect of? wt% Cu loading. The catalysts were prepared by co-precipitation. Characterizations of catalysts were carried out by...This work studied CuO/CeO2-Co3O4 with wt% Ce:Co ratio 95:5 for selective CO oxidation with effect of? wt% Cu loading. The catalysts were prepared by co-precipitation. Characterizations of catalysts were carried out by XRD and BET techniques. The results showed a good dispersion of CuO for 5 wt% Cu loading catalysts and showed high specific surface area of catalyst. For selective CO oxidation, both 5CuO and 30CuO catalysts could remove completely CO in the presence of excess hydrogen at 423 K and 20CuO could eliminate CO completely at 443 K. Moreover, considering the selectivity to CO oxidation, the 5CuO catalyst has shown the highest selectivity of 85% while the 30CuO catalyst obtains the selectivity of 65% at the reaction temperature of 423 K.展开更多
There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,a...There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.展开更多
In a novel plasma-shade reactor for oxidative reforming of biogas(CH4/CO2=3/2),the effects of specific-energy-input (SEI) on CH4 and CO2 conversions and energy cost of syngas were investigated at O2/CH4ratios ranged f...In a novel plasma-shade reactor for oxidative reforming of biogas(CH4/CO2=3/2),the effects of specific-energy-input (SEI) on CH4 and CO2 conversions and energy cost of syngas were investigated at O2/CH4ratios ranged from 0.42 to 0.67.At each of O2/CH4 ratios,V-shape profiles of energy cost of syngas increasing with SEI were observed,reaching the lowest value at the optimal SEI(Opt-SEI).With the increase of O2/CH4 ratio,the Opt-SEI decreased significantly.Moreover,at the Opt-SEI,O2 and CH4 conversions and dry-basis concentration of syngas increased and energy cost of syngas decreased greatly with the increase of O2/CH4 ratio.展开更多
Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1...Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick.展开更多
CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in ai...CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in air at 900 ℃. Monoclinic CePO4 nanowires were prepared by calcining hexagonal CePO4 nanowires (prepared by hydrothermal synthesis at 150 ℃) in air at 900 ℃. Both monoclinic CePO4 materials were used to support Rh2O3 by impregnation using Rh(NO3)3 as a precursor (followed by calcination). The catalytic performance of Rh2O3/monoclinic CePO4 composite materials in N2O decomposition and CO oxidation was investigated. It was found that Rh2O3 supported on monoclinic CePO4 nanowims was much more active than Rh2O3 supported on monoclinic CePO4 nanoparticles. The stability of catalysts as a function of reaction time on stream was studied in both reactions. The influence of co-fed CO2, O2, and H2O on the catalytic activity in N20 decomposition was also studied. These catalysts were characterized by employing N2 adsorption-desorption, ICP-OES, XRD, TEM, XPS, H2-TPR, O2-TPD, and CO2-TPD. The correlation between physicochemical properties and catalytic properties was discussed.展开更多
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
基金Project(2007CB613604) supported by the Major State Basic Research Development Program of ChinaProject(50674104) supported by the National Natural Science Foundation of ChinaProject(GJJ08279) supported by the Department of Education of Jiangxi Province
文摘The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10.
基金supported by the National Key R&D Program of China(2016YFB0600305)~~
文摘A series of Co3O4-CeO2 binary oxides with various Co/(Ce+Co)molar ratios were synthesized using a citric acid method,and their catalytic properties toward the total oxidation of propane were examined.The activities of the catalysts decrease in the order CoCeOx-70>CoCeOx-90>Co3O4>CoCeOx-50>CoCeOx-20>CeO2.CoCeOx-70(Co/(Ce+Co)=70% molar ratio)exhibits the highest catalytic activity toward the total oxidation of propane,of which the T90 is 310℃(GHSV=120000 mL h^-1 g^-1],which is 25℃ lower than that of pure Co3 O4.The enhancement of the catalytic performance of CoCeOx-70 is attributed to the strong interaction between CeO2 and Co3O4,the improvement of the low-temperature reducibility,and the increase in the number of active oxygen species.In-situ DRIFTS and reaction kinetics measurement reveal that Ce addition does not change the reaction mechanism,but promotes the adsorption and activation of propane on the catalyst surface.The addition of water vapor and CO2 in reactant gas has a negative effect on the propane conversion,and the catalyst is more sensitive to water vapor than to CO2.In addition,CoCeOx-70 exhibits excellent stability and reusability in water vapor and CO2 atmosphere.
文摘Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.
文摘Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.
基金supported by the National Natural Science Foundation of China (51572194)the National Key Research and Development Program of China (2018YFB0105900)
文摘In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.
文摘CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.
文摘Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided.
基金supported by the National Natural Science Foundation of China(51708078,21576034)Chongqing Postdoctoral Science Foundation funded project(Xm2016027)the Innovative Research Team of Chongqing(CXTDG201602014,CXTDX201601016)~~
文摘Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Grants funded by the Ministry of Trade,Industry and Energy (MOTIE) (No.20174010201160)the National Research Foundation of Korea (NRF) - Grant funded by the Ministry of Education (No.20090093816),Republic of Korea
文摘Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor performance due to CO poisoning of the leading-high cost anode catalyst.In line with this,we have successfully modified the morphological structure and composition of low cost cobalt based-metal oxides,MCo_2O_4(M = Zn and Ni),with the simple and noble use of polyvinyl pyrrolidone(PVP) as growth modifier and surface stabilizer during the synthesis of nanoparticles in our previous reports,which shown high electrocatalytic activity and strong stability.Due to the good performance of our PVP modified MCo_2O_4 towards pseudocapacitor and oxygen evolution reaction applications,we decided to extend our research study to methanol oxidation reaction.Remarkably,PVP modified Ni Co_2O_4 electrode directly grown on nickel foam substrate via a simple hydrothermal process exhibited better performance compared with PVP modified ZnCo_2O_4 and NiCo_2O_4 without PVP.It had obtained a remarkably low onset potential of 0.285 V and high current density of 280 m A cm^(-2),and shown great stability and high poison tolerance during a continuous CV cycling and Chronoamperometry test,which attained high efficiency of 86.86%and 98.52%,respectively.These positive results of PVP modified Ni Co_2O_4 electrode towards MOR might be attributed to its hierarchical 3 D nanostructures with highly mesoporous surface and large surface area which may have provided numerous electroactive sites,and the exceptional corrosion stability of Ni Co_2O_4 electrode in alkaline solution.
文摘Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.
文摘This work studied CuO/CeO2-Co3O4 with wt% Ce:Co ratio 95:5 for selective CO oxidation with effect of? wt% Cu loading. The catalysts were prepared by co-precipitation. Characterizations of catalysts were carried out by XRD and BET techniques. The results showed a good dispersion of CuO for 5 wt% Cu loading catalysts and showed high specific surface area of catalyst. For selective CO oxidation, both 5CuO and 30CuO catalysts could remove completely CO in the presence of excess hydrogen at 423 K and 20CuO could eliminate CO completely at 443 K. Moreover, considering the selectivity to CO oxidation, the 5CuO catalyst has shown the highest selectivity of 85% while the 30CuO catalyst obtains the selectivity of 65% at the reaction temperature of 423 K.
文摘There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.
基金supported by International Science&Technology Cooperation Program of China (2013DFG60060)
文摘In a novel plasma-shade reactor for oxidative reforming of biogas(CH4/CO2=3/2),the effects of specific-energy-input (SEI) on CH4 and CO2 conversions and energy cost of syngas were investigated at O2/CH4ratios ranged from 0.42 to 0.67.At each of O2/CH4 ratios,V-shape profiles of energy cost of syngas increasing with SEI were observed,reaching the lowest value at the optimal SEI(Opt-SEI).With the increase of O2/CH4 ratio,the Opt-SEI decreased significantly.Moreover,at the Opt-SEI,O2 and CH4 conversions and dry-basis concentration of syngas increased and energy cost of syngas decreased greatly with the increase of O2/CH4 ratio.
基金Funded by the National Torch Plan of China(No.2005EB031110)the National Scientific and Technique Program of Ninth-five Year Plan(96-22-01-19)。
文摘Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick.
基金Supported by the National Natural Science Foundation of China(21177028,21477022)
文摘CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in air at 900 ℃. Monoclinic CePO4 nanowires were prepared by calcining hexagonal CePO4 nanowires (prepared by hydrothermal synthesis at 150 ℃) in air at 900 ℃. Both monoclinic CePO4 materials were used to support Rh2O3 by impregnation using Rh(NO3)3 as a precursor (followed by calcination). The catalytic performance of Rh2O3/monoclinic CePO4 composite materials in N2O decomposition and CO oxidation was investigated. It was found that Rh2O3 supported on monoclinic CePO4 nanowims was much more active than Rh2O3 supported on monoclinic CePO4 nanoparticles. The stability of catalysts as a function of reaction time on stream was studied in both reactions. The influence of co-fed CO2, O2, and H2O on the catalytic activity in N20 decomposition was also studied. These catalysts were characterized by employing N2 adsorption-desorption, ICP-OES, XRD, TEM, XPS, H2-TPR, O2-TPD, and CO2-TPD. The correlation between physicochemical properties and catalytic properties was discussed.