Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequ...Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequence of change of electrical resistance resulted from bending of wires in the longitudinal-strain-experiencing sensing element of the gauge,a phenomenon discussed in this paper theoretically as well as experimentally.This effect yields unwanted signals to blend with output piezoresistive signals and is not negligible,hence decreases measurement accuracy sizably if not properly handled.To overcome this drawback,a new type of manganin transverse piezoresistive gauge has been developed by authors of this paper,which can reduce the resistance increment to acceptable low level so as to effectively bring the adverse effect under control.展开更多
Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignitio...Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.展开更多
There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system...There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.展开更多
In this paper,experiments of one-dimensional plane plate impact on polymethylmethacrylate(PMMA) targets are conducted,in which dynamic transverse stresses induced in the targets are measured using a new type of mang...In this paper,experiments of one-dimensional plane plate impact on polymethylmethacrylate(PMMA) targets are conducted,in which dynamic transverse stresses induced in the targets are measured using a new type of manganin piezoresistive stress gauge having 50 Ω low-pressure narrow grid-like foil.It is shown that this new instrument can improve measurement accuracy remarkably by reducing the so-called strain effect.Moreover,relationship between shear stress and longitudinal stress within a certain range of the latter is obtained.展开更多
基金Sponsored by the National Natural Science of China(10472014)
文摘Manganin piezoresistive gauges have been extensively used in dynamic stress measurement for decades.It is noted,however,that when used to measure transverse stresses,considerable strain effect is caused as the consequence of change of electrical resistance resulted from bending of wires in the longitudinal-strain-experiencing sensing element of the gauge,a phenomenon discussed in this paper theoretically as well as experimentally.This effect yields unwanted signals to blend with output piezoresistive signals and is not negligible,hence decreases measurement accuracy sizably if not properly handled.To overcome this drawback,a new type of manganin transverse piezoresistive gauge has been developed by authors of this paper,which can reduce the resistance increment to acceptable low level so as to effectively bring the adverse effect under control.
基金supported by the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.
基金Sponsored by the National"973"Program Project(51335030103)
文摘There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.
基金Sponsored by the National Natural Science of China(10872035)
文摘In this paper,experiments of one-dimensional plane plate impact on polymethylmethacrylate(PMMA) targets are conducted,in which dynamic transverse stresses induced in the targets are measured using a new type of manganin piezoresistive stress gauge having 50 Ω low-pressure narrow grid-like foil.It is shown that this new instrument can improve measurement accuracy remarkably by reducing the so-called strain effect.Moreover,relationship between shear stress and longitudinal stress within a certain range of the latter is obtained.