The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, ar...The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, are presented for validating the feasibility and accuracy of the BGK-equation simulation in continuum and non-continuum flow regimes. This approach is then used to simulate the exhaust plume formed by a small manoeuvre thruster of an artificial satellite in the outer space. The plume impingement on a flat surface perpendicular to the nozzle axis is also simulated by the same method. In the latter case the impingement force acting on the flat surface is calculated. When the flow reaches to the steady state the calculated impingement force is reasonably compared with the theoretical value of the nozzle thrust.展开更多
基金The project supported by Beijing Institute of Spacecraft Overall Design
文摘The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, are presented for validating the feasibility and accuracy of the BGK-equation simulation in continuum and non-continuum flow regimes. This approach is then used to simulate the exhaust plume formed by a small manoeuvre thruster of an artificial satellite in the outer space. The plume impingement on a flat surface perpendicular to the nozzle axis is also simulated by the same method. In the latter case the impingement force acting on the flat surface is calculated. When the flow reaches to the steady state the calculated impingement force is reasonably compared with the theoretical value of the nozzle thrust.