For projects near the tectonic belt,mylonite of varying metamorphic degrees may be present.The matrix proportion of rock reflects its internal microscopic characteristics,thus it is beneficial for engineering geology ...For projects near the tectonic belt,mylonite of varying metamorphic degrees may be present.The matrix proportion of rock reflects its internal microscopic characteristics,thus it is beneficial for engineering geology to study the effect of the matrix proportion on the mechanical properties and rupture behaviors of rock.Samples of mylonitic granite and granitic protomylonite with varying matrix proportions were obtained from a ductile shear zone for a series of uniaxial compression and acoustic emission(AE)tests.The results showed that with the increase in matrix proportion,the average strength and elastic modulus of the samples increased,and the rock sample with the largest matrix proportion exhibited the maximum peak stress of 244.42 MPa,which was 45.86%greater than the average peak stress of the rock samples with the smallest matrix proportions.For the rock samples with larger matrix proportion,their mechanical parameters exhibited greater dispersion and the large-scale appearance of AE events occurred earlier,showing a relatively gradual failure process.These samples had larger accumulated AE parameter values and greater degree of failure.In contrast,for samples with smaller matrix proportions,the large-scale appearance of AE events occurred close to the peak stress,indicating that the occurrence of damage and fractures was centralized and instantaneous.These samples had lower accumulated AE parameter values and fewer cracks after failure.Additionally,for the rock samples with more matrix proportion,the average variance of the b-value was 1.1,which was lower than that of rock samples with the smallest matrix proportion(the average variance of the b-value was 3.7).Furthermore,it can be predicted that under certain stress,the failure depth around a tunnel is generally smaller when the strength of rock samples with larger matrix proportion is greater.展开更多
Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and dis...Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and discuss their rock-forming mechanism. The research resultsindicate that the rock assemblage of the studied granitoids involves diopside syenite-diopsidegranite-biotite (monzonitic) granite, consisting mainly of K-feldspar, oligoclase, quartz,iron-phlogolite, diopside and edenite. The rocks are rich in mantle-derived fluid components ofvolatiles including F, alkali metal elements such as K, Na, Rb, Sr and Ha, and radiogenicheat-producing elements such as U and Th. They were generated by the influx of mantle-derived fluidsinto the lower crest to give rise to partial melting during the lithosphere thinning in theQinghai-Tibet plateau.展开更多
We have analyzed the gold content of 65 samples of mantle-derived xenoliths and their host rocks from eastern China, which is found to be inhomogeneous, falling in the ranges of 1.0×109-8.2×109 (averaging 3....We have analyzed the gold content of 65 samples of mantle-derived xenoliths and their host rocks from eastern China, which is found to be inhomogeneous, falling in the ranges of 1.0×109-8.2×109 (averaging 3.8 ×10-9) and 0.2×10-9-5.3×10-9 (averaging 2.7×10-9) in the mantle-derived xenoliths and the host basalts respectively. Except the samples from Wanquan County of Hebei Province and Anding County of Hainan Province, the gold content is the highest on the margins of the North China platform and decreases spatially towards the north and south, and temporally the samples of the Tertiary have a higher gold content than those of the Quaternary. The gold content of the mantle-derived xenoliths and the host Paleozoic kimberlites is 3.8×10-9-180×109and 0.1×10-9-38.0×10-9 respectively, which are higher than that in the mantle-derived xenoliths in basalt and the host Cenozoic basalts. The mantle-derived xenoliths have a higher gold content than the host rocks, but their relativity is not very clear, suggesting that the genetic relationship between them is complex. Our data indicate that the average gold content of the lithospheric mantle in eastern China is approximately equal to or approaching 3.8×10-9, which is lower than the average abundance of the upper mantle (5.0×10-9), higher than the average abundance of the continental crust (3.0×10-9) and only slightly higher than the average abundance of the lower continental crust (3.4×10-9). Except the samples from Hainan Province, the mantle-derived xenoliths in basalts with a high gold content are distributed on the two margins of the North China platform, corresponding to the gold deposits-concentrated districts in northwest Hebei Province and Shandong Province, showing the control by the old continental lithospheric mantle and the lower continental crust on the margins of the North China platform. The gold content of the mantle-derived xenoliths from Hainan Province ranges from 7.1×10-9 to 15×10-9, suggesting that some blocks of the lithospheric mantle in Hainan Province may be derived from the ancient gold-rich lithospheric mantle of western Australia and that Hainan Province may possibly be an important gold deposits-concentrated district. Some mantle-derived xenoliths in kimberlite of Shandong Province have an excessively high gold content amounting to 180×10-9, which provides new evidence for the possibility of 'finding gold deposits near kimberlite pipes or alkali-basalt volcanic vents'. Thererfore, the gold content of the mantle-derived xenoliths may be an indicator to the distribution of gold deposits-concentrated districts.展开更多
Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the...Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the neoformed phengite from ultramylonite give 40Ar/39Ar plateau ages of 209.9±1.8 Ma and 214.3±1.8 Ma, which are interpreted as representing cooling times of the TanLu sinistral faulting, and provide geochronological evidence for the syn-orogenic faulting of the Tan-Lu fault zone. The results show that the phengite formed during the retrograde eclogite-facies mylonitization was not contaminated with excess argon and can be used for dating the deformation. Argon closure in previous K-bearing minerals with excess argon under a retrograde HP dry condition is considered to be the reason for lack of excess argon incorporation in the neoformed phengite. Five porphyroclastic phengite samples yield 40Ar/39Ar plateau ages ranging from 666±12 Ma to 307.1±3.3 Ma, which are interpreted as being contaminated with excess argon. Two mixture samples with plateau ages of 239.4±2.1 Ma and 239.3±2.0 Ma show upward-convex age spectra caused by the mixture of older porphyroclastic phengite with excess argon incorporation and younger neoformed phengite without excess argon incorporation. It is demonstrated that excess argon introduced from the previous UHP metamorphism is still preserved in the pre-existing phengite after the Tan-Lu eclogite-facies mylonitization. The intense deformation under HT and HP conditions cannot erase excess argon in the previous phengite totally due to restricted fluid activities. These porphyroclastic phengite previously contaminated with excess argon cannot be used for dating the later HP deformation. This indicates that deformation under a HP dry condition does not play an important role in removing previous 40Are in phengite.展开更多
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric di...The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10-7.87s-1 and 10-11.49s-1 with differential stresses of 32.63-63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing’an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.展开更多
Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore, and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the ...Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore, and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the transportation effect of the thermal energy by mantle-derived fluid, this paper mainly aims at the effect of mantle-derived fluid on the generation of hydrocarbons. With the proof from geochemistry and fluid inclusion, it was suggested that the mantle-derived fluid not only supplied source materials for hydrocarbons, but also supplied essential energy and matter necessary for the generation of hydrocarbons. The mantle-derived fluid had a good effect, but at the same time it had an adverse effect under specific conditions, on the formation of reservoirs. This paper also discusses the future direction and significance of studying mantle-derived fluid.展开更多
This paper discusses the discrimination principles. deduction and methods for probing into the source composition of mantle-derived magma. The magmatophile (incompatible) source elements are not all optimal tracers fo...This paper discusses the discrimination principles. deduction and methods for probing into the source composition of mantle-derived magma. The magmatophile (incompatible) source elements are not all optimal tracers for mantle source composition. The ratios of two strong magmatophile elements (D<1) or the ratios of two trace elements with the same D value are not controlled by the formation mode and evolution degree of a magma, but maintain the characteristics of their composition in mantle source region prior to the magma formation. The ratios are related to different mantle-crust structures and dynamics. The mantle source composition of the Emeishan Basalt series is similar to that of the South Atlantic Rio Grande Rise-Walvis Ridge Basalts and Brazil continental-margin basalts. This may indicate that these basalt series might have similar source regions and tectonic environments.展开更多
Phlogopiie-and diopside-bearing dunite occurs as rounded inclusions in hornblende-diorite. Thepetrofabrics, mineral composition and abundances of the trace elements in the dunite indicate that the inclu-sions were der...Phlogopiie-and diopside-bearing dunite occurs as rounded inclusions in hornblende-diorite. Thepetrofabrics, mineral composition and abundances of the trace elements in the dunite indicate that the inclu-sions were derived from the upper mantle and are the residues of high-degree partial melting of mantlepeirdotite. The study of trace elements in the inclusions and their host rocks shows that the magma was origi-nated from the mantle which was enriched in incompatible elements by mantle metasomatism prior to the par-tial melting.展开更多
Objective The northern Guangxi region is in the southwestern part of the Southern China continent,which is located at the junction of the southwest section of the Early Paleozoic Yangtze block and Cathaysian block.A s...Objective The northern Guangxi region is in the southwestern part of the Southern China continent,which is located at the junction of the southwest section of the Early Paleozoic Yangtze block and Cathaysian block.A series of NNE-trending ductile shear zones are developed in this region,and these ductile shear zones are mostly previously suggested boundary faults of the Early Paleozoic Yangtze block and Cathaysian block,such as the Shoucheng–Piaoli ductile shear zone in Northern Guangxi (Meng Yuanku et al., 2016; Zhang Xuefeng et al., 2015).展开更多
On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collec...On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.展开更多
During several decades of exploration, a number of mantle-derived natural gas pools have been discovered in the vicinities of deep faults in the Songliao Basin, northeastern China. The natural gas in these pools has a...During several decades of exploration, a number of mantle-derived natural gas pools have been discovered in the vicinities of deep faults in the Songliao Basin, northeastern China. The natural gas in these pools has a δ13C1 value of ?16.50/00 to ?24.20/00, a reversed arrangement in the amount of carbon isotopes in methane and its endogamous products (namely, δ13C1 >δ13C2 >δ13C3 >δ13C4), a 3He/4He value of 1.97 to 2.34×10-6,and an Ar/36Ar value of 1063 to 1949. This indicates a mantle 40 source for the natural gas. The trace elements Cd, In, Te and Re, never found in organic-sourced hydrocarbons, are highly enriched in certain crude oils from the Basin; respectively, concentrations of these elements were found to be 751, 28, 16 and 323 times the average crustal values in China, and this also supports a mantle-derived natural gas origin. The characteristics of mantled-derived magmatic rocks, hydrothermal fluids and gaseous fractions distributed in and near the deep Songliao Basin faults indicate that rifting tectonics is providing the mechanisms for this outgassing of the mantle. Deep extensional (normal) faults provide pathways for upward movement of these materials, and in the Songliao Basin, these deep rift fault zones are associated with reservoir occurrence and cap rock seals, forming good sites for accumulation of mantle-derived natural gas. Furthermore, a layer of low velocity, low density and high conductivity in the deep crust has been identified as a potential reservoir for mantle-derived natural gas.展开更多
Structural analyses in the northern part of the North Patagonia Massif, in the foliated Caita Co granite and in La Sefia and Pangare mylonites, indicate that the pluton was intruded as a sheet-like body into an openin...Structural analyses in the northern part of the North Patagonia Massif, in the foliated Caita Co granite and in La Sefia and Pangare mylonites, indicate that the pluton was intruded as a sheet-like body into an opening pull-apart structure during the Gondwana Orogeny. Geochronological studies in the massif indicate a first, lower to middle Permian stage of regional deformation, related to movements during indentation tectonics, with emplacement of foliated granites in the western and central areas of the North Patagonian Massif. Between the upper Permian and lower Triassic, evidence indicates emplacement of undeformed granitic bodies in the central part of the North Patagonian Massif. A second pulse of deformation between the middle and upper Triassic is related to the emplacement of the Caita CO granite, the development of mylonitic belts, and the opening of the Los Menucos Basin. During this pulse of deformation, compression direction was from the eastern quadrant.展开更多
: The colours and chemical composition variations of 160 spinels in peridotite and pyroxenite xenoliths from Cenozoic basalts in eastern China and their petrogeneses have been studied in detail. The relationships betw...: The colours and chemical composition variations of 160 spinels in peridotite and pyroxenite xenoliths from Cenozoic basalts in eastern China and their petrogeneses have been studied in detail. The relationships between major elements of spinels are discussed. The equilibrium temperatures, pressures and oxygen fugacities of spinels and their coexisting olivines, orthopyroxenes and clinopyroxenes have been determined using the Brey—kohler's T—P calculation methods (1990) and Ballhaus' fo2 calculation method (1991). The relationships between the composition and the equilibrium temperatures, pressures or oxygen fugacities of spinels in peridotite xenoliths from the basalts and the stable field of the spinels in the upper mantle have been shown.展开更多
Abu Rusheid area lie in the south of the Eastern Desert of Egypt and comprises(1)ophiolitic mélange,consisting of ultramafic rocks and layered metagabbros in metasedimentary matrix(2)cataclastic group,consisting ...Abu Rusheid area lie in the south of the Eastern Desert of Egypt and comprises(1)ophiolitic mélange,consisting of ultramafic rocks and layered metagabbros in metasedimentary matrix(2)cataclastic group,consisting of protomylonites,mylonites,ultramylonites and silicified ultramylonites(3)monzogranites(4)pegmatite pockets,quartz veins and postgranite dykes.Focus on the monzogranites and the xenoliths of mylonite rocks from the geochemical and mineralogical points of view introduces a new view about the genesis of the related mineralization.Geochemically,the monzogranites have a metaluminous character and were crystallized under moderate water-vapor pressure around 3 kb and temperatures of 750–800°C.The monzogranites are altered along strike-slip faults exhibiting propylitic,with slightly sodic metasomatism and record high radioactive measurements.The average uranium and thorium(U and Th)contents in fresh monzogranites,mylonite xenolith and altered monzogranites are(7.3,21.20),(40.36,94.82),(60.34 and 347.88 ppm),respectively.These high radioactivities are attributed to the presence of kasolite,uranothorite,cerite,fluorite,zircon,apatite and columbite.The mylonite xenolith is higher in radioactivity than the surrounding fresh monzogranites,reflecting U and Th enrichment before emplacement of the monzogranites,then the latter were subjected to right lateral strike-slip faulting with producing hydrothermal solution rich in Th and U.展开更多
Bu’s gold deposit is geographically situated in the northern side of Sawuer Mt., Western Jungar. Magmatites in Bu’s deposit including extrusive and intrusive rocks are widespread and have genetic relationship with t...Bu’s gold deposit is geographically situated in the northern side of Sawuer Mt., Western Jungar. Magmatites in Bu’s deposit including extrusive and intrusive rocks are widespread and have genetic relationship with the deposit. One volcanic suite and two intrusives are studied here. Extrusive products were formed in the Early Carboniferous with a whole-rock Rb-Sr isochron age of 347 Ma and fossil ages, while intrusions have Rb-Sr isochron ages from 310 to 329 Ma and are intrusive into the Lower Carboniferous and Upper Devonian.The isotope parameters I ranges from 0. 7037 to 0. 7046, from -5. 65^+6.67 and more,goes from +5. 65~ +7. 96, displaying that they have similar material sources and are derived from mantle magmas or their derivatives. The continental crust of Zhaisang diwa region may be initially formed in the Late-Proterozoic or even more earlier and grew probably in terms of non-proportionated model like S. China, N. American and other parts in the world.展开更多
This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids f...This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.展开更多
A number of studies revealed that the Gangdese magmatic belt of southern Tibet was closely related to the northward subduction of the Neo-Tethys oceanic lithosphere and Indo-Asian collision.However,pre-Cretaceous magm...A number of studies revealed that the Gangdese magmatic belt of southern Tibet was closely related to the northward subduction of the Neo-Tethys oceanic lithosphere and Indo-Asian collision.However,pre-Cretaceous magmatism is still poorly constrained in the Gangdese magmatic belt,southern Tibet.Here,we conducted systematically geochronology and geochemistry studies on a newly-identified granitic pluton in the middle Gangdese magmatic belt(Namling area),southern Tibet.Zircon SHRIMPⅡU-Pb dating for one representative sample gives a weighted age of 184.2±1.8 Ma(MSWD=±1.11),corresponding to emplacement and crystallization age of the granitic pluton in the Early Jurassic(Pliensbachian).High SiO2(68.9-72.1 wt.%)contents and intermediate Mg#values(35-38)together suggest that the newly-identified granitic pluton was probably formed by partial melting of crustal material with minor injection of mantle-derived magma,precluding an origin from melting of metasedimentary rocks that are characterized by low Mg#and high zirconδ^18O values(>8‰).Geochemically,the newly-identified granitic pluton belongs to typical I-type granitic affinity,whereas this is inconsistent with aluminium saturation index(ASI=A/CNK ratios)and geochemical signatures.This suggests that zircon oxygen isotopes(4.30‰-5.28‰)and mineral features(lacking Al-rich minerals)are reliable indicators for discriminating granitic origin.Significantly depleted whole-rock Sr-Nd-Hf isotopic compositions and zirconεHf(t)values indicate that the granitic pluton was derived from partial melting of depleted arc-type lavas.In addition,the granitic pluton shows zirconδ^18O values ranging from 4.30‰to 5.28‰(with a mean value of 4.77‰)that are consistent with mantle-derived zircon values(5.3‰±0.6‰)within the uncertainties,indicating that the granitic pluton might have experienced weak short-living high-temperature hydrous fluid-rock interaction.Combined with the Sr-Nd-Hf-O isotopes and geochemical signatures,we propose that the newly-identified granitic pluton was originated from partial melting of depleted mafic lower crust,and experienced only negligible wall-rock contamination during ascent.Integrated with published data,we also propose that the initial subduction of the Neo-Tethys oceanic lithosphere occurred no later than the Pliensbachian of the Early Jurassic.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125402)the Natural Science Foundation of Sichuan Province,China(Grant No.2022NSFSC0005).
文摘For projects near the tectonic belt,mylonite of varying metamorphic degrees may be present.The matrix proportion of rock reflects its internal microscopic characteristics,thus it is beneficial for engineering geology to study the effect of the matrix proportion on the mechanical properties and rupture behaviors of rock.Samples of mylonitic granite and granitic protomylonite with varying matrix proportions were obtained from a ductile shear zone for a series of uniaxial compression and acoustic emission(AE)tests.The results showed that with the increase in matrix proportion,the average strength and elastic modulus of the samples increased,and the rock sample with the largest matrix proportion exhibited the maximum peak stress of 244.42 MPa,which was 45.86%greater than the average peak stress of the rock samples with the smallest matrix proportions.For the rock samples with larger matrix proportion,their mechanical parameters exhibited greater dispersion and the large-scale appearance of AE events occurred earlier,showing a relatively gradual failure process.These samples had larger accumulated AE parameter values and greater degree of failure.In contrast,for samples with smaller matrix proportions,the large-scale appearance of AE events occurred close to the peak stress,indicating that the occurrence of damage and fractures was centralized and instantaneous.These samples had lower accumulated AE parameter values and fewer cracks after failure.Additionally,for the rock samples with more matrix proportion,the average variance of the b-value was 1.1,which was lower than that of rock samples with the smallest matrix proportion(the average variance of the b-value was 3.7).Furthermore,it can be predicted that under certain stress,the failure depth around a tunnel is generally smaller when the strength of rock samples with larger matrix proportion is greater.
基金the China Postdoctoral Science Foundation the Key Project (No.9502010)of the former Ministry of Geology and Mineral Resources+1 种基金 the National Key BasicResearch Project (No.G1999043211) the NationalScience Foundation of China Outstanding Youth Grant(No.49925306).
文摘Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and discuss their rock-forming mechanism. The research resultsindicate that the rock assemblage of the studied granitoids involves diopside syenite-diopsidegranite-biotite (monzonitic) granite, consisting mainly of K-feldspar, oligoclase, quartz,iron-phlogolite, diopside and edenite. The rocks are rich in mantle-derived fluid components ofvolatiles including F, alkali metal elements such as K, Na, Rb, Sr and Ha, and radiogenicheat-producing elements such as U and Th. They were generated by the influx of mantle-derived fluidsinto the lower crest to give rise to partial melting during the lithosphere thinning in theQinghai-Tibet plateau.
基金supported by the National Natural Science Foundation of China grant 49972034the National 973 Project of China grant G1999043211
文摘We have analyzed the gold content of 65 samples of mantle-derived xenoliths and their host rocks from eastern China, which is found to be inhomogeneous, falling in the ranges of 1.0×109-8.2×109 (averaging 3.8 ×10-9) and 0.2×10-9-5.3×10-9 (averaging 2.7×10-9) in the mantle-derived xenoliths and the host basalts respectively. Except the samples from Wanquan County of Hebei Province and Anding County of Hainan Province, the gold content is the highest on the margins of the North China platform and decreases spatially towards the north and south, and temporally the samples of the Tertiary have a higher gold content than those of the Quaternary. The gold content of the mantle-derived xenoliths and the host Paleozoic kimberlites is 3.8×10-9-180×109and 0.1×10-9-38.0×10-9 respectively, which are higher than that in the mantle-derived xenoliths in basalt and the host Cenozoic basalts. The mantle-derived xenoliths have a higher gold content than the host rocks, but their relativity is not very clear, suggesting that the genetic relationship between them is complex. Our data indicate that the average gold content of the lithospheric mantle in eastern China is approximately equal to or approaching 3.8×10-9, which is lower than the average abundance of the upper mantle (5.0×10-9), higher than the average abundance of the continental crust (3.0×10-9) and only slightly higher than the average abundance of the lower continental crust (3.4×10-9). Except the samples from Hainan Province, the mantle-derived xenoliths in basalts with a high gold content are distributed on the two margins of the North China platform, corresponding to the gold deposits-concentrated districts in northwest Hebei Province and Shandong Province, showing the control by the old continental lithospheric mantle and the lower continental crust on the margins of the North China platform. The gold content of the mantle-derived xenoliths from Hainan Province ranges from 7.1×10-9 to 15×10-9, suggesting that some blocks of the lithospheric mantle in Hainan Province may be derived from the ancient gold-rich lithospheric mantle of western Australia and that Hainan Province may possibly be an important gold deposits-concentrated district. Some mantle-derived xenoliths in kimberlite of Shandong Province have an excessively high gold content amounting to 180×10-9, which provides new evidence for the possibility of 'finding gold deposits near kimberlite pipes or alkali-basalt volcanic vents'. Thererfore, the gold content of the mantle-derived xenoliths may be an indicator to the distribution of gold deposits-concentrated districts.
基金This study was funded by the National Natural Science Foundation of China (grant numbers 40272094, 40672131) We gratefully acknowledge Mr. Luo Xiuquan and Zhang Youquan from the Petroleum Geology Research and Laboratory Center, Institute of Petroleum Exploration and Development, Beijing, for their work on the 40Ar/39Ar analysis.
文摘Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the neoformed phengite from ultramylonite give 40Ar/39Ar plateau ages of 209.9±1.8 Ma and 214.3±1.8 Ma, which are interpreted as representing cooling times of the TanLu sinistral faulting, and provide geochronological evidence for the syn-orogenic faulting of the Tan-Lu fault zone. The results show that the phengite formed during the retrograde eclogite-facies mylonitization was not contaminated with excess argon and can be used for dating the deformation. Argon closure in previous K-bearing minerals with excess argon under a retrograde HP dry condition is considered to be the reason for lack of excess argon incorporation in the neoformed phengite. Five porphyroclastic phengite samples yield 40Ar/39Ar plateau ages ranging from 666±12 Ma to 307.1±3.3 Ma, which are interpreted as being contaminated with excess argon. Two mixture samples with plateau ages of 239.4±2.1 Ma and 239.3±2.0 Ma show upward-convex age spectra caused by the mixture of older porphyroclastic phengite with excess argon incorporation and younger neoformed phengite without excess argon incorporation. It is demonstrated that excess argon introduced from the previous UHP metamorphism is still preserved in the pre-existing phengite after the Tan-Lu eclogite-facies mylonitization. The intense deformation under HT and HP conditions cannot erase excess argon in the previous phengite totally due to restricted fluid activities. These porphyroclastic phengite previously contaminated with excess argon cannot be used for dating the later HP deformation. This indicates that deformation under a HP dry condition does not play an important role in removing previous 40Are in phengite.
基金financially co-supported by the National Key R&D Program of China (Grant No.2017YFC0601401 and 2017YFC0601300-01)the National Natural Science Foundation of China (Grant no. 41602211 and 41230206)
文摘The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10-7.87s-1 and 10-11.49s-1 with differential stresses of 32.63-63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing’an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.
文摘Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore, and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the transportation effect of the thermal energy by mantle-derived fluid, this paper mainly aims at the effect of mantle-derived fluid on the generation of hydrocarbons. With the proof from geochemistry and fluid inclusion, it was suggested that the mantle-derived fluid not only supplied source materials for hydrocarbons, but also supplied essential energy and matter necessary for the generation of hydrocarbons. The mantle-derived fluid had a good effect, but at the same time it had an adverse effect under specific conditions, on the formation of reservoirs. This paper also discusses the future direction and significance of studying mantle-derived fluid.
文摘This paper discusses the discrimination principles. deduction and methods for probing into the source composition of mantle-derived magma. The magmatophile (incompatible) source elements are not all optimal tracers for mantle source composition. The ratios of two strong magmatophile elements (D<1) or the ratios of two trace elements with the same D value are not controlled by the formation mode and evolution degree of a magma, but maintain the characteristics of their composition in mantle source region prior to the magma formation. The ratios are related to different mantle-crust structures and dynamics. The mantle source composition of the Emeishan Basalt series is similar to that of the South Atlantic Rio Grande Rise-Walvis Ridge Basalts and Brazil continental-margin basalts. This may indicate that these basalt series might have similar source regions and tectonic environments.
文摘Phlogopiie-and diopside-bearing dunite occurs as rounded inclusions in hornblende-diorite. Thepetrofabrics, mineral composition and abundances of the trace elements in the dunite indicate that the inclu-sions were derived from the upper mantle and are the residues of high-degree partial melting of mantlepeirdotite. The study of trace elements in the inclusions and their host rocks shows that the magma was origi-nated from the mantle which was enriched in incompatible elements by mantle metasomatism prior to the par-tial melting.
基金funded by the National Natural Science Foundation of China(grants No.41572191 and 41702211)the Natural Science Foundation of Guangxi(grant No.2017GXNSFBA198166)
文摘Objective The northern Guangxi region is in the southwestern part of the Southern China continent,which is located at the junction of the southwest section of the Early Paleozoic Yangtze block and Cathaysian block.A series of NNE-trending ductile shear zones are developed in this region,and these ductile shear zones are mostly previously suggested boundary faults of the Early Paleozoic Yangtze block and Cathaysian block,such as the Shoucheng–Piaoli ductile shear zone in Northern Guangxi (Meng Yuanku et al., 2016; Zhang Xuefeng et al., 2015).
基金This study was supported by the National Key Project "Study of the Natural Gas Fault System in the Tancheng-Lujiang Fault Belt (No. 95-101-01)" of the Ninth Five-Year Plan Period and the National Natural Science Foundation of China Grant 48970172.
文摘On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.
文摘During several decades of exploration, a number of mantle-derived natural gas pools have been discovered in the vicinities of deep faults in the Songliao Basin, northeastern China. The natural gas in these pools has a δ13C1 value of ?16.50/00 to ?24.20/00, a reversed arrangement in the amount of carbon isotopes in methane and its endogamous products (namely, δ13C1 >δ13C2 >δ13C3 >δ13C4), a 3He/4He value of 1.97 to 2.34×10-6,and an Ar/36Ar value of 1063 to 1949. This indicates a mantle 40 source for the natural gas. The trace elements Cd, In, Te and Re, never found in organic-sourced hydrocarbons, are highly enriched in certain crude oils from the Basin; respectively, concentrations of these elements were found to be 751, 28, 16 and 323 times the average crustal values in China, and this also supports a mantle-derived natural gas origin. The characteristics of mantled-derived magmatic rocks, hydrothermal fluids and gaseous fractions distributed in and near the deep Songliao Basin faults indicate that rifting tectonics is providing the mechanisms for this outgassing of the mantle. Deep extensional (normal) faults provide pathways for upward movement of these materials, and in the Songliao Basin, these deep rift fault zones are associated with reservoir occurrence and cap rock seals, forming good sites for accumulation of mantle-derived natural gas. Furthermore, a layer of low velocity, low density and high conductivity in the deep crust has been identified as a potential reservoir for mantle-derived natural gas.
基金part of the research project"Configuración Geológica y Geodinámica del sector central de la Comarca Nordpatagónica,Argentina"(24/H100)granted by the Universidad Nacional del Sur"La Orogenia Gondwánica en el sector central de la Comarca Nordpatagónica"(11420090100108)granted by CONICET
文摘Structural analyses in the northern part of the North Patagonia Massif, in the foliated Caita Co granite and in La Sefia and Pangare mylonites, indicate that the pluton was intruded as a sheet-like body into an opening pull-apart structure during the Gondwana Orogeny. Geochronological studies in the massif indicate a first, lower to middle Permian stage of regional deformation, related to movements during indentation tectonics, with emplacement of foliated granites in the western and central areas of the North Patagonian Massif. Between the upper Permian and lower Triassic, evidence indicates emplacement of undeformed granitic bodies in the central part of the North Patagonian Massif. A second pulse of deformation between the middle and upper Triassic is related to the emplacement of the Caita CO granite, the development of mylonitic belts, and the opening of the Los Menucos Basin. During this pulse of deformation, compression direction was from the eastern quadrant.
文摘: The colours and chemical composition variations of 160 spinels in peridotite and pyroxenite xenoliths from Cenozoic basalts in eastern China and their petrogeneses have been studied in detail. The relationships between major elements of spinels are discussed. The equilibrium temperatures, pressures and oxygen fugacities of spinels and their coexisting olivines, orthopyroxenes and clinopyroxenes have been determined using the Brey—kohler's T—P calculation methods (1990) and Ballhaus' fo2 calculation method (1991). The relationships between the composition and the equilibrium temperatures, pressures or oxygen fugacities of spinels in peridotite xenoliths from the basalts and the stable field of the spinels in the upper mantle have been shown.
文摘Abu Rusheid area lie in the south of the Eastern Desert of Egypt and comprises(1)ophiolitic mélange,consisting of ultramafic rocks and layered metagabbros in metasedimentary matrix(2)cataclastic group,consisting of protomylonites,mylonites,ultramylonites and silicified ultramylonites(3)monzogranites(4)pegmatite pockets,quartz veins and postgranite dykes.Focus on the monzogranites and the xenoliths of mylonite rocks from the geochemical and mineralogical points of view introduces a new view about the genesis of the related mineralization.Geochemically,the monzogranites have a metaluminous character and were crystallized under moderate water-vapor pressure around 3 kb and temperatures of 750–800°C.The monzogranites are altered along strike-slip faults exhibiting propylitic,with slightly sodic metasomatism and record high radioactive measurements.The average uranium and thorium(U and Th)contents in fresh monzogranites,mylonite xenolith and altered monzogranites are(7.3,21.20),(40.36,94.82),(60.34 and 347.88 ppm),respectively.These high radioactivities are attributed to the presence of kasolite,uranothorite,cerite,fluorite,zircon,apatite and columbite.The mylonite xenolith is higher in radioactivity than the surrounding fresh monzogranites,reflecting U and Th enrichment before emplacement of the monzogranites,then the latter were subjected to right lateral strike-slip faulting with producing hydrothermal solution rich in Th and U.
文摘Bu’s gold deposit is geographically situated in the northern side of Sawuer Mt., Western Jungar. Magmatites in Bu’s deposit including extrusive and intrusive rocks are widespread and have genetic relationship with the deposit. One volcanic suite and two intrusives are studied here. Extrusive products were formed in the Early Carboniferous with a whole-rock Rb-Sr isochron age of 347 Ma and fossil ages, while intrusions have Rb-Sr isochron ages from 310 to 329 Ma and are intrusive into the Lower Carboniferous and Upper Devonian.The isotope parameters I ranges from 0. 7037 to 0. 7046, from -5. 65^+6.67 and more,goes from +5. 65~ +7. 96, displaying that they have similar material sources and are derived from mantle magmas or their derivatives. The continental crust of Zhaisang diwa region may be initially formed in the Late-Proterozoic or even more earlier and grew probably in terms of non-proportionated model like S. China, N. American and other parts in the world.
基金National Natural Science Foundation of China (Grant 40473021) the National 973- Project of the Ministry of Science and Technology of China (2003CB214600) the Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, and the jointed project of Max-Planck-Institute of Society and Chinese Academy of Sciences in Max-Planck-Institute of Nuclear Physics,Heidelberg, Germany.
文摘This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.
基金co-supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2019QD002)the National Natural Science Foundation of China(Grant No.41902230)+2 种基金the Key Laboratory of DeepEarth Dynamics of Ministry of Natural Resources(Grant No.J1901-16)the Young innovative projects of Shandong Province(Grant No.2019KJH004)the research foundation of China Geological Survey(JYYWF20181702)。
文摘A number of studies revealed that the Gangdese magmatic belt of southern Tibet was closely related to the northward subduction of the Neo-Tethys oceanic lithosphere and Indo-Asian collision.However,pre-Cretaceous magmatism is still poorly constrained in the Gangdese magmatic belt,southern Tibet.Here,we conducted systematically geochronology and geochemistry studies on a newly-identified granitic pluton in the middle Gangdese magmatic belt(Namling area),southern Tibet.Zircon SHRIMPⅡU-Pb dating for one representative sample gives a weighted age of 184.2±1.8 Ma(MSWD=±1.11),corresponding to emplacement and crystallization age of the granitic pluton in the Early Jurassic(Pliensbachian).High SiO2(68.9-72.1 wt.%)contents and intermediate Mg#values(35-38)together suggest that the newly-identified granitic pluton was probably formed by partial melting of crustal material with minor injection of mantle-derived magma,precluding an origin from melting of metasedimentary rocks that are characterized by low Mg#and high zirconδ^18O values(>8‰).Geochemically,the newly-identified granitic pluton belongs to typical I-type granitic affinity,whereas this is inconsistent with aluminium saturation index(ASI=A/CNK ratios)and geochemical signatures.This suggests that zircon oxygen isotopes(4.30‰-5.28‰)and mineral features(lacking Al-rich minerals)are reliable indicators for discriminating granitic origin.Significantly depleted whole-rock Sr-Nd-Hf isotopic compositions and zirconεHf(t)values indicate that the granitic pluton was derived from partial melting of depleted arc-type lavas.In addition,the granitic pluton shows zirconδ^18O values ranging from 4.30‰to 5.28‰(with a mean value of 4.77‰)that are consistent with mantle-derived zircon values(5.3‰±0.6‰)within the uncertainties,indicating that the granitic pluton might have experienced weak short-living high-temperature hydrous fluid-rock interaction.Combined with the Sr-Nd-Hf-O isotopes and geochemical signatures,we propose that the newly-identified granitic pluton was originated from partial melting of depleted mafic lower crust,and experienced only negligible wall-rock contamination during ascent.Integrated with published data,we also propose that the initial subduction of the Neo-Tethys oceanic lithosphere occurred no later than the Pliensbachian of the Early Jurassic.