Automated manual transmissions,which usually adopt synchronizers to complete the gear shift process,have many advantageous features.However,the torque interruption and the challenging control objectives during the gea...Automated manual transmissions,which usually adopt synchronizers to complete the gear shift process,have many advantageous features.However,the torque interruption and the challenging control objectives during the gear shift process limit its industrial application,especially for the power-on gear downshift.This paper proposes a model predic-tive control(MPC)method to control the clutch engagement process and effectively shorten the torque interruption,consequently enhancing the gear downshift quality.During the control law deduction,the proposed MPC also accounts for time-domain constraints explicitly.After the control law was deduced,it was validated through simulations under two typical power-on gear downshift working scenarios.Both of the simulation results demonstrate that the controller proposed in this paper can shorten the torque interruption time during power-on gear downshifts while minimizing vehicle jerk for overall satisfactory drivability.展开更多
A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle v...A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle vibration. A mathematical and multi-body dynamics co-simulation model is built to reproduce the gear rattle phenomenon of one typical type of manual transmission. In the model, multi-body dynamics part is used for rotational motion and engagement simulation of gearbox shafts and gears, while mathematical part for control and data processing. The simulation results show that the sound source of the gear rattle from the first gear to the third gear is similar to the experimental results;different parameters like rotating damping, contact stiffness,contact damping, inertia moment and torque fluctuation making effects on gear rattle vibration strength are researched and simulated. The comparison of the simulation and experimental results shows that this method can provide recommendations for solving practical gear rattle problems.展开更多
Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift an...Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift and so on. Based on simulation, the responding throttle control strategies are proposed, and a simple but effective throttle control method is presented. The testing results have proved that the strategies are effective for improving the pedal tracking precision and the qualities of start and shift.展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic ...In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic and the gear shifting control process.The SDG model is built based on related priori knowledge.By calculating the fuzzy membership degree of each compatible passway and its possible fault source,we get the possibilities of failure for each possible fault source.We begin with the nodes with the maximum possibility of failure in order to find the failed part.The diagnosis example shows that it is feasible to use the semi-quantitative SDG model for fault diagnosis of the gear shifting process in AMT.展开更多
In roller bearings, the outer ring is usually fixed and the inner ring has the rolling motion. Concerning TRB (tapered roller bearings), this motion generates forces that are transmitted to the outer ring by the tap...In roller bearings, the outer ring is usually fixed and the inner ring has the rolling motion. Concerning TRB (tapered roller bearings), this motion generates forces that are transmitted to the outer ring by the tapered rollers. Thus, contact stresses occur and the number of rollers plays a major role with respect to the load distribution. This influence is analyzed in this study by the FEM (finite element method) with commercial code ABAQUS, where two models were evaluated: a common TRB and the same one but with fewer rollers. As an application, a manual automotive transmission was considered for the input loads.展开更多
基金supported by the National Nature Science Foundation of China(61520106008)China Automobile Industry Innovation and Development Joint Fund(U1664257)Jilin Province Department of Education“Thirteen Five”scientific and technological research projects(JJKH20170379KJ).
文摘Automated manual transmissions,which usually adopt synchronizers to complete the gear shift process,have many advantageous features.However,the torque interruption and the challenging control objectives during the gear shift process limit its industrial application,especially for the power-on gear downshift.This paper proposes a model predic-tive control(MPC)method to control the clutch engagement process and effectively shorten the torque interruption,consequently enhancing the gear downshift quality.During the control law deduction,the proposed MPC also accounts for time-domain constraints explicitly.After the control law was deduced,it was validated through simulations under two typical power-on gear downshift working scenarios.Both of the simulation results demonstrate that the controller proposed in this paper can shorten the torque interruption time during power-on gear downshifts while minimizing vehicle jerk for overall satisfactory drivability.
文摘A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle vibration. A mathematical and multi-body dynamics co-simulation model is built to reproduce the gear rattle phenomenon of one typical type of manual transmission. In the model, multi-body dynamics part is used for rotational motion and engagement simulation of gearbox shafts and gears, while mathematical part for control and data processing. The simulation results show that the sound source of the gear rattle from the first gear to the third gear is similar to the experimental results;different parameters like rotating damping, contact stiffness,contact damping, inertia moment and torque fluctuation making effects on gear rattle vibration strength are researched and simulated. The comparison of the simulation and experimental results shows that this method can provide recommendations for solving practical gear rattle problems.
基金This project is supported by Provincial Open Foundation of Key Lab forAutomobile of Jiangsu, China (No.KJS02076) and 985 Project of AutomotiveEngineering Innovation Platform of Jilin University, China.
文摘Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift and so on. Based on simulation, the responding throttle control strategies are proposed, and a simple but effective throttle control method is presented. The testing results have proved that the strategies are effective for improving the pedal tracking precision and the qualities of start and shift.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(20130342035)
文摘In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic and the gear shifting control process.The SDG model is built based on related priori knowledge.By calculating the fuzzy membership degree of each compatible passway and its possible fault source,we get the possibilities of failure for each possible fault source.We begin with the nodes with the maximum possibility of failure in order to find the failed part.The diagnosis example shows that it is feasible to use the semi-quantitative SDG model for fault diagnosis of the gear shifting process in AMT.
文摘In roller bearings, the outer ring is usually fixed and the inner ring has the rolling motion. Concerning TRB (tapered roller bearings), this motion generates forces that are transmitted to the outer ring by the tapered rollers. Thus, contact stresses occur and the number of rollers plays a major role with respect to the load distribution. This influence is analyzed in this study by the FEM (finite element method) with commercial code ABAQUS, where two models were evaluated: a common TRB and the same one but with fewer rollers. As an application, a manual automotive transmission was considered for the input loads.