The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur...Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.展开更多
Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conserv...Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.展开更多
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re...To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.展开更多
As a new type of lightweight structure,metallic lattice structure has higher stiffness and strength to weight ratio.To freely obtain 316L lattice structures with designed cell structure and adjustable porosity,additiv...As a new type of lightweight structure,metallic lattice structure has higher stiffness and strength to weight ratio.To freely obtain 316L lattice structures with designed cell structure and adjustable porosity,additive manufacturing combined with investment casting was conducted to fabricate the 316L lattice structures with Kelvin cell.The compression simulation of 316L lattice structures with different porosities was carried out by using the finite element method.The numerical simulation results were verified by compression experiment,and the simulated results were consistent with the compression tests.The compressive mechanical properties of 316L lattice structures are directly related to porosity and independent of strut diameters.The 316L lattice structures with Kelvin cell have a smooth stress-strain curve and obvious plastic platform,and the hump stress-strain curves are avoided.展开更多
It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity...It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.展开更多
Under the background of the all-round deepening of quality education,the cultivation of comprehensive quality has become the main theme of contemporary education reform.Good behavior and habits are of great significan...Under the background of the all-round deepening of quality education,the cultivation of comprehensive quality has become the main theme of contemporary education reform.Good behavior and habits are of great significance to children’s future learning,growth,and development.Through literature review and other methods,this paper analyzes the current situation of children’s family education and the influence of family education on the cultivation of children’s behavioral habits and provides some strategies for cultivating children’s good behavioral habits in family education.展开更多
This letter provides a concise review of the pertinent literature on visual and tactile hallucinations in elderly patients.The discussion addresses differential diagnoses and potential underlying mechanisms,as well as...This letter provides a concise review of the pertinent literature on visual and tactile hallucinations in elderly patients.The discussion addresses differential diagnoses and potential underlying mechanisms,as well as the psychopathology associated with tactile hallucinations,and emphasizes the necessity for invest-igation into the possibility of coexisting delusional infestation(parasitosis).These symptoms frequently manifest in patients with primary psychotic disorders,organic mental disorders,and substance use disorders.The proposed pathophy-siological mechanisms may involve dopaminergic imbalances and dysfunction of the striatal dopamine transporter.展开更多
ZTE Corporation announced on November 6, 2009 that the company has received the prestigious "World’s Best CDMA Equipment Manufacturer 2009" award from research and consulting firm Frost & Sullivan.
The potential Chinese market is increasingly attracting the major PC producers of the world, against a background of a forecast that the global PC market is shrinking. According to an analysis of experts with the Mini...The potential Chinese market is increasingly attracting the major PC producers of the world, against a background of a forecast that the global PC market is shrinking. According to an analysis of experts with the Ministry of the Electronics Industry, the institutional demand for PCs will substantially increase with the implementation of the national economy information management system.展开更多
According to Q2 Report on China’s Wearable Device Market,China’s wearable devices in Q2 2016 saw an output of 9.54 million units,up 13.2%month-on-month and 81.4%yearon-year.The basic wearable devices representing by...According to Q2 Report on China’s Wearable Device Market,China’s wearable devices in Q2 2016 saw an output of 9.54 million units,up 13.2%month-on-month and 81.4%yearon-year.The basic wearable devices representing by wristband,children watch and smart shoes increased by92.1%year-on-year and the smart wearable devices represented by smart watch increased by 3.4%year-on-year.'Unlike the overseas展开更多
Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from dig...Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.展开更多
The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of m...The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.展开更多
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr...Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.展开更多
Ozone depletion induced by anthropogenic gases has been increasing the transmission of solar ultraviolet-B radiation(UV-B, 280–315 nm) through the atmosphere, which may impact the fitness of marine invertebrates in i...Ozone depletion induced by anthropogenic gases has been increasing the transmission of solar ultraviolet-B radiation(UV-B, 280–315 nm) through the atmosphere, which may impact the fitness of marine invertebrates in intertidal and shallow waters. To our knowledge, however, the responses of fitness related behaviors to UV-B radiation at different intensities have been rarely studied in marine invertebrates. For the first time, the present study investigated the eff ects of exposure of one hour to UV-B radiation at different intensities on foraging behavior, Aristotle's lantern reflex and righting behavior of the sea urchin Strongylocentrotus intermedius. Exposure of one hour to UV-B radiation at 10 μW/cm^2 significantly reduced foraging behavior. An intensity dependent eff ect of exposure to UV-B radiation was found in the duration of the Aristotle's lantern reflex. Exposure to UV-B radiation at 20 μW/cm^2 for one hour significantly reduced the duration of the Aristotle's lantern reflex, but 10 μW/cm^2 did not. There was no significant diff erence of righting response time among sea urchins exposed to 0, 10 and 20 μW/cm^2 for one hour. To test potential carryover ef fects, the behavioral traits were re-measured three days later. We found significant carryover eff ects of UV-B radiation on foraging time and righting response time, but not on the duration of the Aristotle's lantern reflex. The present study indicates that a brief exposure of one hour to UV-B radiation can significantly aff ect the duration of Aristotle's lantern reflex, righting response time and foraging behavior of a sea urchin, although the immediate impacts and carryover eff ects were highly trait dependent. This study provides new information into the behavioral responses of marine invertebrates to exposure to UV-B radiation. Future studies should be carried out to investigate long-term carryover eff ects of UV-B radiation on behavioral and physiological fitness related traits.展开更多
The selective laser melting(SLM) method has a great potential for fabricating injection mold with complex structure. However, the microstructure and performance of the SLM molds show significantly di erent from those ...The selective laser melting(SLM) method has a great potential for fabricating injection mold with complex structure. However, the microstructure and performance of the SLM molds show significantly di erent from those manufac?tured by traditional technologies. In this study, the microstructure, hardness and especially corrosion behavior of the samples fabricated by SLM and casting were investigated. The XRD results exhibit that the γ?Fe phase is only obtained in the SLM parts, and the α?Fe peak slightly moves to low di raction angle compared with casting counterparts. Due to the rapid cooling rate, the SLM samples have fine cellular microstructures while the casting ones have coarse grains with obvious elements segregation. Besides, the SLM samples show anisotropy, hardness of side view and top view are 48.73 and 50.31 HRC respectively, which are 20% higher than that of casting ones. Corrosion results show that the SLM samples have the better anti?corrosion resistance(in a 6% FeCl3 solution for 48 h) but the deeper corrosion pits than casting ones. Finally, the performance of the SLM molds could meet the requirement of injecting production. Moreover, the molds especially present a significant decrease(20%) of cooling time and increases of cooling uniform?ity due to the customized conformal cooling channels.展开更多
Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory...Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer’s disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12),Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 10^5) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica,was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone,learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.展开更多
The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization,potentiostatic polarization and AC impedance measurements.The results show that the s...The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization,potentiostatic polarization and AC impedance measurements.The results show that the solution treatment−aging(STA)process aggravates the element micro-segregation compared to the annealing process,leading to varied Al and V contents of the phases from different samples.It is proven that either Al-rich or V-rich condition can highly affect the electrochemical dissolution behaviors due to thermodynamical instability caused by element segregation.The dissolution rate in the metastable passivation process is controlled by the stability of the produced film that is affected by phases distribution,especially the difficult-to-dissolve phase.And then,the dissolution rate of the phases in the transpassivation region is consistent with the rank in the activation process because the dense film is not capable of being produced.Compared to the annealed sample,the higher dissolution rate of the STA sample is beneficial to the electrochemical machining(ECM)of Ti6Al4V.展开更多
In this study,a kind of Ni-based superalloy specially designed for additive manufacturing(AM)was investigated.Thermo-Calc simulation and differential scanning calorimetry(DSC)analysis were used to determine phases and...In this study,a kind of Ni-based superalloy specially designed for additive manufacturing(AM)was investigated.Thermo-Calc simulation and differential scanning calorimetry(DSC)analysis were used to determine phases and their transformation temperature.Experimental specimens were prepared by laser metal deposition(LMD)and traditional casting method.Microstructure,phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy(SEM),transmission scanning electron microscopy(TEM),X-ray diffraction(XRD)and tensile tests.The results show that this alloy contains two basic phases,γ/γ’,in addition to these phases,at least two secondary phases may be present,such as MC carbides and Laves phases.Furthermore,the as-deposited alloy has finer dendrite,its mean primary dendrite arm space(PDAS)is about 30-45μm,and the average size ofγ’particles is 100-150 nm.However,the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500μm with secondary and even third dendrite arms.Correspondingly,the alloy displays different tensile behavior with different processing methods,and the as-deposited specimen shows better ultimate tensile stress(1,085.7±51.7 MPa),yield stress(697±19.5 MPa)and elongation(25.8%±2.2%)than that of the as-cast specimen.The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites,γ’,and Laves phase,and the segregation of elements,etc.Such important information would be helpful for alloy application as well as new alloy development.展开更多
The effects of alloying elements of Ca/Sn on corrosion behaviors of the as-cast Mg-4Zn-0.2Mn alloy were investigated by immersion tests and electrochemical methods.The results indicated that the average corrosion rate...The effects of alloying elements of Ca/Sn on corrosion behaviors of the as-cast Mg-4Zn-0.2Mn alloy were investigated by immersion tests and electrochemical methods.The results indicated that the average corrosion rate value of the Mg-4Zn-0.2Mn-Ca alloy was∼0.31 mm/year in Hank’s physiological solution for 40 days,and corrosion resistance increased for the specimens containing Ca element rather than that containing Sn because of the higher breakdown potential value,lower current density and deactivated corrosion rate,which was ascribed to a formation of the uniformly distributed Mg-Zn-Ca ternary phase.展开更多
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金financially supported by the National Natural Science Foundation of China(Nos.12272356,12072326,and 12172337)the State Key Laboratory of Dynamic Measurement Technology,North University of China(No.2022-SYSJJ-03)。
文摘Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.
基金supported by the National Natural Science Foundation of China (grant number 31872240)。
文摘Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52201116,52071116,and 52261135543)+1 种基金Heilongjiang Touyan Team ProgramChina Postdoctoral Science Foundation(No.2022M710939).
文摘To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.
基金supported by the Technology Development Fund of the China Academy of Machinery Science and Technology(No.170221ZY01).
文摘As a new type of lightweight structure,metallic lattice structure has higher stiffness and strength to weight ratio.To freely obtain 316L lattice structures with designed cell structure and adjustable porosity,additive manufacturing combined with investment casting was conducted to fabricate the 316L lattice structures with Kelvin cell.The compression simulation of 316L lattice structures with different porosities was carried out by using the finite element method.The numerical simulation results were verified by compression experiment,and the simulated results were consistent with the compression tests.The compressive mechanical properties of 316L lattice structures are directly related to porosity and independent of strut diameters.The 316L lattice structures with Kelvin cell have a smooth stress-strain curve and obvious plastic platform,and the hump stress-strain curves are avoided.
基金financial support from the National Natural Science Foundation of China (Grant No.52004320)the Science Foundation of China University of Petroleum,Beijing (No.2462021QNXZ012,No.2462022BJRC001,and No.2462021YJRC012)the funding from the State Key Laboratory of Petroleum Resources and Engineering (No.PRP/indep-1-2103)。
文摘It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.
文摘Under the background of the all-round deepening of quality education,the cultivation of comprehensive quality has become the main theme of contemporary education reform.Good behavior and habits are of great significance to children’s future learning,growth,and development.Through literature review and other methods,this paper analyzes the current situation of children’s family education and the influence of family education on the cultivation of children’s behavioral habits and provides some strategies for cultivating children’s good behavioral habits in family education.
文摘This letter provides a concise review of the pertinent literature on visual and tactile hallucinations in elderly patients.The discussion addresses differential diagnoses and potential underlying mechanisms,as well as the psychopathology associated with tactile hallucinations,and emphasizes the necessity for invest-igation into the possibility of coexisting delusional infestation(parasitosis).These symptoms frequently manifest in patients with primary psychotic disorders,organic mental disorders,and substance use disorders.The proposed pathophy-siological mechanisms may involve dopaminergic imbalances and dysfunction of the striatal dopamine transporter.
文摘ZTE Corporation announced on November 6, 2009 that the company has received the prestigious "World’s Best CDMA Equipment Manufacturer 2009" award from research and consulting firm Frost & Sullivan.
文摘The potential Chinese market is increasingly attracting the major PC producers of the world, against a background of a forecast that the global PC market is shrinking. According to an analysis of experts with the Ministry of the Electronics Industry, the institutional demand for PCs will substantially increase with the implementation of the national economy information management system.
文摘According to Q2 Report on China’s Wearable Device Market,China’s wearable devices in Q2 2016 saw an output of 9.54 million units,up 13.2%month-on-month and 81.4%yearon-year.The basic wearable devices representing by wristband,children watch and smart shoes increased by92.1%year-on-year and the smart wearable devices represented by smart watch increased by 3.4%year-on-year.'Unlike the overseas
基金This research is supported by the National Natural Science Foundation of China(91646102,L1824039,L1724034,L1624045,and L1524015)the project of China’s Ministry of Education(16JDGC011)+6 种基金the Chinese Academy of Engineering’s consultancy project(2019-ZD-9)the National Science and Technology Major Project(2016ZX04005002)Beijing Natural Science Foundation Project(9182013)the technology projects of the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences(CKCEST-2019-2-13,CKCEST-2018-1-13,CKCEST-2017-1-10,and CKCEST-2015-4-2)the UK–China Industry Academia Partnership Programme(UK-CIAPP\260)the Volvo-supported Green Economy and Sustainable Development Projects in the Tsinghua University(20153000181)Tsinghua Initiative Research(2016THZW).
文摘Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.
文摘The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.
基金National Natural Science Foundation of China (51935014,52165043, 82072084, 81871498)Jiang Xi Provincial Natural Science Foundation of China (20192ACB20005,2020ACB214004)+6 种基金The Provincial Key R&D Projects of Jiangxi (20201BBE51012)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme (2018)Shenzhen Science and Technology Plan Project (JCYJ20170817112445033)Innovation Team Project on University of Guangdong Province(2018GKCXTD001)Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(PT2020E002)China Postdoctoral Science Foundation(2020M682114)Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology。
文摘Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.
基金Supported by the National Natural Science Foundation of China(No.41506177)the Laboratory for Marine Fisheries Science and Food Production Processes,Qingdao National Laboratory for Marine Science and Technology,China(No.2017-1B05)+2 种基金the Chinese Outstanding Talents in Agricultural Scientific Research(for Chang Y)the Liaoning Department of Science and Technology(No.2015203003)the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province(No.2015006)
文摘Ozone depletion induced by anthropogenic gases has been increasing the transmission of solar ultraviolet-B radiation(UV-B, 280–315 nm) through the atmosphere, which may impact the fitness of marine invertebrates in intertidal and shallow waters. To our knowledge, however, the responses of fitness related behaviors to UV-B radiation at different intensities have been rarely studied in marine invertebrates. For the first time, the present study investigated the eff ects of exposure of one hour to UV-B radiation at different intensities on foraging behavior, Aristotle's lantern reflex and righting behavior of the sea urchin Strongylocentrotus intermedius. Exposure of one hour to UV-B radiation at 10 μW/cm^2 significantly reduced foraging behavior. An intensity dependent eff ect of exposure to UV-B radiation was found in the duration of the Aristotle's lantern reflex. Exposure to UV-B radiation at 20 μW/cm^2 for one hour significantly reduced the duration of the Aristotle's lantern reflex, but 10 μW/cm^2 did not. There was no significant diff erence of righting response time among sea urchins exposed to 0, 10 and 20 μW/cm^2 for one hour. To test potential carryover ef fects, the behavioral traits were re-measured three days later. We found significant carryover eff ects of UV-B radiation on foraging time and righting response time, but not on the duration of the Aristotle's lantern reflex. The present study indicates that a brief exposure of one hour to UV-B radiation can significantly aff ect the duration of Aristotle's lantern reflex, righting response time and foraging behavior of a sea urchin, although the immediate impacts and carryover eff ects were highly trait dependent. This study provides new information into the behavioral responses of marine invertebrates to exposure to UV-B radiation. Future studies should be carried out to investigate long-term carryover eff ects of UV-B radiation on behavioral and physiological fitness related traits.
基金National Natural Science Foundation of China(Grant No.51605176)National Hi-tech R&D Program of China(863 Program,Grant No.2015AA042501)+3 种基金Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB502)Guangdong Provincial Technology Major Project of China(Grant No.2017B090911007)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(Grant No.P2019-006)Engineering Research Center of Rock-Soil Drilling&Excavation and Protection,Ministry of Education(Grant No.201804)
文摘The selective laser melting(SLM) method has a great potential for fabricating injection mold with complex structure. However, the microstructure and performance of the SLM molds show significantly di erent from those manufac?tured by traditional technologies. In this study, the microstructure, hardness and especially corrosion behavior of the samples fabricated by SLM and casting were investigated. The XRD results exhibit that the γ?Fe phase is only obtained in the SLM parts, and the α?Fe peak slightly moves to low di raction angle compared with casting counterparts. Due to the rapid cooling rate, the SLM samples have fine cellular microstructures while the casting ones have coarse grains with obvious elements segregation. Besides, the SLM samples show anisotropy, hardness of side view and top view are 48.73 and 50.31 HRC respectively, which are 20% higher than that of casting ones. Corrosion results show that the SLM samples have the better anti?corrosion resistance(in a 6% FeCl3 solution for 48 h) but the deeper corrosion pits than casting ones. Finally, the performance of the SLM molds could meet the requirement of injecting production. Moreover, the molds especially present a significant decrease(20%) of cooling time and increases of cooling uniform?ity due to the customized conformal cooling channels.
基金supported by the National Natural Science Foundation of China,No.81202740 and 81603686the Natural Science Foundation of Tianjin of China,No.17JCYBJC26200 and 12JCQNJC07400+1 种基金the Public Health Bureau Science and Technology Foundation of Tianjin of China,No.2014KY15the Specialized Research Foundation for the Doctoral Program of Higher Education,No.20121210120002
文摘Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer’s disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12),Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 10^5) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica,was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone,learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.
基金The authors are grateful for the financial supports from the project of Ministry of Industry and Information Technology of China(No.2019-00899-1-1)the Natural Science Foundation of Shaanxi Province,China(No.2021JM-060)Fundamental Research Funds for the Central Universities,China(No.3102019QD0409).
文摘The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization,potentiostatic polarization and AC impedance measurements.The results show that the solution treatment−aging(STA)process aggravates the element micro-segregation compared to the annealing process,leading to varied Al and V contents of the phases from different samples.It is proven that either Al-rich or V-rich condition can highly affect the electrochemical dissolution behaviors due to thermodynamical instability caused by element segregation.The dissolution rate in the metastable passivation process is controlled by the stability of the produced film that is affected by phases distribution,especially the difficult-to-dissolve phase.And then,the dissolution rate of the phases in the transpassivation region is consistent with the rank in the activation process because the dense film is not capable of being produced.Compared to the annealed sample,the higher dissolution rate of the STA sample is beneficial to the electrochemical machining(ECM)of Ti6Al4V.
基金financially supported by the National Science and Technology Major Project(Y2019-Ⅶ-0011-0151)the National Natural Science Foundation of China(No.51771190)。
文摘In this study,a kind of Ni-based superalloy specially designed for additive manufacturing(AM)was investigated.Thermo-Calc simulation and differential scanning calorimetry(DSC)analysis were used to determine phases and their transformation temperature.Experimental specimens were prepared by laser metal deposition(LMD)and traditional casting method.Microstructure,phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy(SEM),transmission scanning electron microscopy(TEM),X-ray diffraction(XRD)and tensile tests.The results show that this alloy contains two basic phases,γ/γ’,in addition to these phases,at least two secondary phases may be present,such as MC carbides and Laves phases.Furthermore,the as-deposited alloy has finer dendrite,its mean primary dendrite arm space(PDAS)is about 30-45μm,and the average size ofγ’particles is 100-150 nm.However,the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500μm with secondary and even third dendrite arms.Correspondingly,the alloy displays different tensile behavior with different processing methods,and the as-deposited specimen shows better ultimate tensile stress(1,085.7±51.7 MPa),yield stress(697±19.5 MPa)and elongation(25.8%±2.2%)than that of the as-cast specimen.The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites,γ’,and Laves phase,and the segregation of elements,etc.Such important information would be helpful for alloy application as well as new alloy development.
基金supported by National Key Research and Development Program of China(2016YFB0301101,2016YFB0301001)Beijing Natural Science Foundation(2172013).
文摘The effects of alloying elements of Ca/Sn on corrosion behaviors of the as-cast Mg-4Zn-0.2Mn alloy were investigated by immersion tests and electrochemical methods.The results indicated that the average corrosion rate value of the Mg-4Zn-0.2Mn-Ca alloy was∼0.31 mm/year in Hank’s physiological solution for 40 days,and corrosion resistance increased for the specimens containing Ca element rather than that containing Sn because of the higher breakdown potential value,lower current density and deactivated corrosion rate,which was ascribed to a formation of the uniformly distributed Mg-Zn-Ca ternary phase.