The management and control of material flow forms the core of manufacturing execution systems (MES) in the petrochemical industry. The bottleneck in the application of MES is the ability to match the material-flow m...The management and control of material flow forms the core of manufacturing execution systems (MES) in the petrochemical industry. The bottleneck in the application of MES is the ability to match the material-flow model with the production processes. A dynamic material-flow model is proposed in this paper after an analysis of the material-flow characteristics of the production process in a petrochemical industry. The main material-flow events are described, including the movement, storage, shifting, recycling, and elimination of the materials. The spatial and temporal characters of the material-flow events are described, and the material-flow model is constructed. The dynamic material-flow model introduced herein is the basis for other subsystems in the MES. In addition, it is the subsystem with the least scale in MES. The dynamic-modeling method of material flow has been applied in the development of the SinoMES model. It helps the petrochemical plant to manage the entire flow information related to tanks and equipments from the aspects of measurement, storage, movement, and the remaining balance of the material. As a result, it matches the production process by error elimination and data reconciliation. In addition, it facilitates the integration of application modules into the MES and guarantees the potential development of SinoMES in future applications.展开更多
Agile manufacturing execution systems (AMES) are used to help manufacturers optimize shop floor production in an agile way. And the modeling of AMES is the key issue of realizing AMES. This paper presents an agent-bas...Agile manufacturing execution systems (AMES) are used to help manufacturers optimize shop floor production in an agile way. And the modeling of AMES is the key issue of realizing AMES. This paper presents an agent-based approach to AMES modeling. Firstly, the characteristics of AMES and its requirements on modeling are discussed. Secondly, a comparative analysis of modeling methods is carried out, and AMES modeling using an agent-based approach is put forward. Agent-based modeling method not only inherit the favorable features of traditional object-oriented modeling method such as data encapsulation, modularity and so on, but also has the ability to construct intelligent, rational and autonomous agent which can cooperate together to realize the goal of agile operation. A general agent architecture used in AMES modeling is described. Under this architecture, an agent can be divided into domain-independent components and domain-specific components which helps solve problems such as information overload, incomplete information handling and soft decision-making. Furthermore, an AMES model using four types of agents, i.e., interface agent, information agent, resource agent and management agent, is established. Thirdly, a snapshot of AMES model is provided in the case study. Especially, an agent-based cooperating process of task scheduling in AMES is illustrated in detail. Finally, the advantages and disadvantages of this modeling approach are discussed as well.展开更多
The extended enterprise is formed according to the philosophy of dispersednetworked manufacturing. Manufacturing execution system (MES) can close the information gap whichexists between device control system and produ...The extended enterprise is formed according to the philosophy of dispersednetworked manufacturing. Manufacturing execution system (MES) can close the information gap whichexists between device control system and production information management system. The functions andthe web-based architecture of the MES in the extended enterprise are introduced. Using thecooperating system models of object-oriented and distributed agents and CORBA, all objects keep touniform interface standards and are easily inserted to object request broker. The utilization ofdistributed MES in extended enterprise can adapt fast change of manufacturing environment andresource. It also can improve the independent management capability of manufacturing cell and theenterprise response capability to global economic competition.展开更多
基金the National High Technology Research and Development Program of China (No.2007AA04Z191).
文摘The management and control of material flow forms the core of manufacturing execution systems (MES) in the petrochemical industry. The bottleneck in the application of MES is the ability to match the material-flow model with the production processes. A dynamic material-flow model is proposed in this paper after an analysis of the material-flow characteristics of the production process in a petrochemical industry. The main material-flow events are described, including the movement, storage, shifting, recycling, and elimination of the materials. The spatial and temporal characters of the material-flow events are described, and the material-flow model is constructed. The dynamic material-flow model introduced herein is the basis for other subsystems in the MES. In addition, it is the subsystem with the least scale in MES. The dynamic-modeling method of material flow has been applied in the development of the SinoMES model. It helps the petrochemical plant to manage the entire flow information related to tanks and equipments from the aspects of measurement, storage, movement, and the remaining balance of the material. As a result, it matches the production process by error elimination and data reconciliation. In addition, it facilitates the integration of application modules into the MES and guarantees the potential development of SinoMES in future applications.
文摘Agile manufacturing execution systems (AMES) are used to help manufacturers optimize shop floor production in an agile way. And the modeling of AMES is the key issue of realizing AMES. This paper presents an agent-based approach to AMES modeling. Firstly, the characteristics of AMES and its requirements on modeling are discussed. Secondly, a comparative analysis of modeling methods is carried out, and AMES modeling using an agent-based approach is put forward. Agent-based modeling method not only inherit the favorable features of traditional object-oriented modeling method such as data encapsulation, modularity and so on, but also has the ability to construct intelligent, rational and autonomous agent which can cooperate together to realize the goal of agile operation. A general agent architecture used in AMES modeling is described. Under this architecture, an agent can be divided into domain-independent components and domain-specific components which helps solve problems such as information overload, incomplete information handling and soft decision-making. Furthermore, an AMES model using four types of agents, i.e., interface agent, information agent, resource agent and management agent, is established. Thirdly, a snapshot of AMES model is provided in the case study. Especially, an agent-based cooperating process of task scheduling in AMES is illustrated in detail. Finally, the advantages and disadvantages of this modeling approach are discussed as well.
文摘The extended enterprise is formed according to the philosophy of dispersednetworked manufacturing. Manufacturing execution system (MES) can close the information gap whichexists between device control system and production information management system. The functions andthe web-based architecture of the MES in the extended enterprise are introduced. Using thecooperating system models of object-oriented and distributed agents and CORBA, all objects keep touniform interface standards and are easily inserted to object request broker. The utilization ofdistributed MES in extended enterprise can adapt fast change of manufacturing environment andresource. It also can improve the independent management capability of manufacturing cell and theenterprise response capability to global economic competition.