The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The gen...The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.展开更多
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is a...The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain.展开更多
An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion...An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion of solid kerogen in oil shale to liquid oil through </span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"> pyrolysis by radio frequency heating. Radio frequency heating as a method of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis represents a tenable enhanced oil recovery method, whereby an applied electrical potential difference across a target oil shale formation is converted to thermal energy, heating the oil shale and causing it to liquify to become liquid oil. A number of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis methods are reviewed but the focus of this work is on the verification of the TPME numerical framework to model radio frequency heating as a potential dielectric heating process for enhanced oil recovery.</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">Very few studies exist which describe production from oil shale;furthermore, there are none that specifically address the verification of numerical models describing radio frequency heating. As a result, the Method of Manufactured Solutions (MMS) was used as an analytical verification method of the developed numerical code. Results show that the multiphysics finite element framework was adequately modeled enabling the simulation of kerogen conversion to oil as a part of the analysis of a TPME numerical model.展开更多
Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc^xe of recycled aggregate concrete (RAC). A new manufac...Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc^xe of recycled aggregate concrete (RAC). A new manufacturing method named "W3T4" was proposed to improve the performances of interracial transition zone (ITZ) between recycled aggregate and mortar. The mechanical properties and the durability of RAC were tested, which show that this new manufacturing method improves the properties of RAC, and the GGBS with finest size makes a great contribution to the performance of RAC due to its better filling effect and much earlier pozzolanic reaction. Combined with GGBS, the effects of PHS on the retardation of setting time can be alleviated and the synergistic effect helps to make a more compact RAC. For the RAC with 25% of the recycled aggregate (RA) replacement and 10% PHS + 10% GGBS additives, the compressive strength increases by 25.4%, but the permeability decreases by 64.3% with respect to the reference concrete made with nature aggregates. The micro-mechanisms of these improvements were investigated by the scanning electron microscope (SEM). The SEM images show that the new manufacturing method, adding superfine pozzolanic powders and super-plasticizer benefits, makes a much denser ITZ in RAC.展开更多
A cationic waterborne polyurethane(CWPU) was synthesized and utilized as impregnation material for manufacturing microfiber synthetic leather base,in an attempt to decrease environmental pollution associated with orga...A cationic waterborne polyurethane(CWPU) was synthesized and utilized as impregnation material for manufacturing microfiber synthetic leather base,in an attempt to decrease environmental pollution associated with organic solvents and improve simulation degree relative to genuine leather.The alkali resistance of the CWPU and four manufacture methods were investigated.Meanwhile,the dyeing properties of the microfiber synthetic leather base were studied.It was found that the CWPU displayed enough alkali resistance to endure the alkali deweighting process for microfiber synthetic leather base manufacture.In terms of bending length,bending rigidity,compression elasticity ratio and specific compression elasticity ratio of the resulting base,coagulating the impregnated CWPU with sodium hydroxide before steam treatment was the optimal method.The extent of fiber splitting and the handle of the base from this method were both similar to conventional base filled with solvent-based polyurethane(SPU).The dyeing properties of the microfiber synthetic leather base filled with CWPU were also found superior to the one filled with either anionic waterborne polyurethane(AWPU) or SPU.展开更多
Interest in large-scale energy storage technologies has risen in recent decades with the rapid development of renewable energy.The redox flow battery satisfies the energy storage demands well owing to its advantages o...Interest in large-scale energy storage technologies has risen in recent decades with the rapid development of renewable energy.The redox flow battery satisfies the energy storage demands well owing to its advantages of scalability,flexibility,high round-trip efficiency,and long durability.As a critical component of the redox flow battery,the bipolar plates provide mechanical support for the electrodes and act as a physical separator between adjacent cells,as well as constructing the internal circuit and guiding the electrolyte flow.The present work offers a comprehensive review of the development of bipolar plates in redox flow batteries,covering materials,structures,and manufacturing methods.In terms of materials,the effects of material types and composition on the compactness,mechanical strength,and electrical conductivity are summarized in detail.Furthermore,the corrosion mechanisms of bipolar plates and the corresponding detection and mitigation methods are discussed.In addition,the structures of the bipolar plates refer to the flow field designs on the surface.The advantages and disadvantages of these existing flow fields are described,and the tendencies for further optimization are also discussed.The manufacturing of composite bipolar plates in terms of material cost and preparation methods is also outlined.Based on the summary of previous research,this work provides suggestions for the future development of high-performance bipolar plates.展开更多
Cable-net structures are of substantial importance in the construction of large mesh reflector antennas.Owing to the inevitable errors in their manufacturing process,the reflector surface accuracy deteriorates.This st...Cable-net structures are of substantial importance in the construction of large mesh reflector antennas.Owing to the inevitable errors in their manufacturing process,the reflector surface accuracy deteriorates.This study makes a comprehensive investigation of random manufacturing errors during constructing the mesh reflector antennas,and analyze its influence on reflector surface accuracy.Firstly,the sensitivity of reflector surface accuracy with respect to the random errors of the unstressed cable length is mathematically deducted.Secondly,a non-button connecting method is proposed and analyzed to reduce manufacturing errors.Thirdly,two physical experiment models based on 2.62-meter mesh reflector antenna are made.Finally,numerical examples and experimental tests are given to demonstrate the effectiveness of the proposed method.Compared with the traditional method,the proposed method can effectively reduce the influence of the manufacturing errors on the reflector surface accuracy.Moreover,the reduction in the sizes of the nodes also reduces the risk of entanglement of the mesh reflector antenna during the deployment process,and thereby improves the deployment reliability.展开更多
GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point...GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.展开更多
Faster response to orientation varying is one of the outstanding abilities of a parallel kinematic machine(PKM).It enables such a system to act as a reconfgurable module employed to machine large components effcient...Faster response to orientation varying is one of the outstanding abilities of a parallel kinematic machine(PKM).It enables such a system to act as a reconfgurable module employed to machine large components effciently.The stiffness formulation and analysis are the beforehand key tasks for its parameters design.A novel PKM with four degrees of freedom(DOFs)is proposed in this paper.The topology behind it is 2PUS-2PRS parallel mechanism.Its semianalytical stiffness model is frstly obtained,where the generalized Jacobian matrix of 2PUS-2PRS is formulated with the help of the screw theory and the stiffness coeffcients of complicated components are estimated by integrating fnite element analysis and numerical ftting.Under the help of the model,it is predicted that the property of system stiffness distributes within the given workspace,which features symmetry about a certain plane and is also verifed by performing fnite element analysis of the virtual prototype.Furthermore,key parameters affecting the system stiffness are identifed through sensitivity analysis.These provide insights for further optimization design of this PKM.展开更多
The accuracy of gradient reconstruction methods on unstructured meshes is analyzed both mathematically and numerically.Mathematical derivations reveal that,for gradient reconstruction based on the Green-Gauss theorem(...The accuracy of gradient reconstruction methods on unstructured meshes is analyzed both mathematically and numerically.Mathematical derivations reveal that,for gradient reconstruction based on the Green-Gauss theorem(the GG methods),if the summation of first-and-lower-order terms does not counterbalance in the discretized integral process,which rarely occurs,second-order accurate approximation of face midpoint value is necessary to produce at least first-order accurate gradient.However,gradient reconstruction based on the least-squares approach(the LSQ methods)is at least first-order on arbitrary unstructured grids.Verifications are performed on typical isotropic grid stencils by analyzing the relationship between the discretization error of gradient reconstruction and the discretization error of the face midpoint value approximation of a given analytic function.Meanwhile,the numerical accuracy of gradient reconstruction methods is examined with grid convergence study on typical isotropic grids.Results verify the phenomenon of accuracy degradation for the GG methods when the face midpoint value condition is not satisfied.The LSQ methods are proved to be at least first-order on all tested isotropic grids.To study gradient accuracy effects on inviscid flow simulation,solution errors are quantified using the Method of Manufactured Solutions(MMS)which was validated before adoption by comparing with an exact solution case,i.e.,the 2-dimensional(2D)inviscid isentropic vortex.Numerical results demonstrate that the order of accuracy(OOA)of gradient reconstruction is crucial in determining the OOA of numerical solutions.Solution accuracy deteriorates seriously if gradient reconstruction does not reach first-order.展开更多
基金Project(2013BAF01B04) supported by the National Key Technology R&D Program during the Twelfth Five-year Plan of ChinaProject(51205425) supported by the National Natural Science Foundation of China
文摘The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.
基金Project supported by the National Natural Science Foundation of China (No. 11102108)the Shanghai Leading Academic Discipline Project (No. B206)
文摘The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain.
文摘An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion of solid kerogen in oil shale to liquid oil through </span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"> pyrolysis by radio frequency heating. Radio frequency heating as a method of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis represents a tenable enhanced oil recovery method, whereby an applied electrical potential difference across a target oil shale formation is converted to thermal energy, heating the oil shale and causing it to liquify to become liquid oil. A number of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis methods are reviewed but the focus of this work is on the verification of the TPME numerical framework to model radio frequency heating as a potential dielectric heating process for enhanced oil recovery.</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">Very few studies exist which describe production from oil shale;furthermore, there are none that specifically address the verification of numerical models describing radio frequency heating. As a result, the Method of Manufactured Solutions (MMS) was used as an analytical verification method of the developed numerical code. Results show that the multiphysics finite element framework was adequately modeled enabling the simulation of kerogen conversion to oil as a part of the analysis of a TPME numerical model.
基金Project(51178417)supported by the National Natural Science Foundation of ChinaProject(2012R10025)supported by the Qianjiang Talent Plan of Zhejiang Province,China+2 种基金Project(2012HY006B)supported by the Marine Cross-Guide Research Funds of Zhejiang University,ChinaProject(2013FZA4015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Department of Construction of Zhejiang Province,China
文摘Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc^xe of recycled aggregate concrete (RAC). A new manufacturing method named "W3T4" was proposed to improve the performances of interracial transition zone (ITZ) between recycled aggregate and mortar. The mechanical properties and the durability of RAC were tested, which show that this new manufacturing method improves the properties of RAC, and the GGBS with finest size makes a great contribution to the performance of RAC due to its better filling effect and much earlier pozzolanic reaction. Combined with GGBS, the effects of PHS on the retardation of setting time can be alleviated and the synergistic effect helps to make a more compact RAC. For the RAC with 25% of the recycled aggregate (RA) replacement and 10% PHS + 10% GGBS additives, the compressive strength increases by 25.4%, but the permeability decreases by 64.3% with respect to the reference concrete made with nature aggregates. The micro-mechanisms of these improvements were investigated by the scanning electron microscope (SEM). The SEM images show that the new manufacturing method, adding superfine pozzolanic powders and super-plasticizer benefits, makes a much denser ITZ in RAC.
基金National Natural Science Foundations,China(Nos.51273128,21206096)New Teachers’Fund for Doctor Stations of Education Ministry,China(No.20120181120116)
文摘A cationic waterborne polyurethane(CWPU) was synthesized and utilized as impregnation material for manufacturing microfiber synthetic leather base,in an attempt to decrease environmental pollution associated with organic solvents and improve simulation degree relative to genuine leather.The alkali resistance of the CWPU and four manufacture methods were investigated.Meanwhile,the dyeing properties of the microfiber synthetic leather base were studied.It was found that the CWPU displayed enough alkali resistance to endure the alkali deweighting process for microfiber synthetic leather base manufacture.In terms of bending length,bending rigidity,compression elasticity ratio and specific compression elasticity ratio of the resulting base,coagulating the impregnated CWPU with sodium hydroxide before steam treatment was the optimal method.The extent of fiber splitting and the handle of the base from this method were both similar to conventional base filled with solvent-based polyurethane(SPU).The dyeing properties of the microfiber synthetic leather base filled with CWPU were also found superior to the one filled with either anionic waterborne polyurethane(AWPU) or SPU.
基金the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.51888103)the National Key Research and Development Program of China(No.2017YFB0102703)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51721004).
文摘Interest in large-scale energy storage technologies has risen in recent decades with the rapid development of renewable energy.The redox flow battery satisfies the energy storage demands well owing to its advantages of scalability,flexibility,high round-trip efficiency,and long durability.As a critical component of the redox flow battery,the bipolar plates provide mechanical support for the electrodes and act as a physical separator between adjacent cells,as well as constructing the internal circuit and guiding the electrolyte flow.The present work offers a comprehensive review of the development of bipolar plates in redox flow batteries,covering materials,structures,and manufacturing methods.In terms of materials,the effects of material types and composition on the compactness,mechanical strength,and electrical conductivity are summarized in detail.Furthermore,the corrosion mechanisms of bipolar plates and the corresponding detection and mitigation methods are discussed.In addition,the structures of the bipolar plates refer to the flow field designs on the surface.The advantages and disadvantages of these existing flow fields are described,and the tendencies for further optimization are also discussed.The manufacturing of composite bipolar plates in terms of material cost and preparation methods is also outlined.Based on the summary of previous research,this work provides suggestions for the future development of high-performance bipolar plates.
基金supported by the National Natural Science Foundations of China(Nos.52022075,U1937202,&52175246)the Fundamental Research Funds for the Central Universities(Nos.QTZX2188&QTZX2173)。
文摘Cable-net structures are of substantial importance in the construction of large mesh reflector antennas.Owing to the inevitable errors in their manufacturing process,the reflector surface accuracy deteriorates.This study makes a comprehensive investigation of random manufacturing errors during constructing the mesh reflector antennas,and analyze its influence on reflector surface accuracy.Firstly,the sensitivity of reflector surface accuracy with respect to the random errors of the unstressed cable length is mathematically deducted.Secondly,a non-button connecting method is proposed and analyzed to reduce manufacturing errors.Thirdly,two physical experiment models based on 2.62-meter mesh reflector antenna are made.Finally,numerical examples and experimental tests are given to demonstrate the effectiveness of the proposed method.Compared with the traditional method,the proposed method can effectively reduce the influence of the manufacturing errors on the reflector surface accuracy.Moreover,the reduction in the sizes of the nodes also reduces the risk of entanglement of the mesh reflector antenna during the deployment process,and thereby improves the deployment reliability.
文摘GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.
基金supported by the National Natural Science Foundation of China (Nos.51075295 and 51005164)Tianjin Research Program of Application Foundation and Advanced Technology (No.11JCYBJC05600)
文摘Faster response to orientation varying is one of the outstanding abilities of a parallel kinematic machine(PKM).It enables such a system to act as a reconfgurable module employed to machine large components effciently.The stiffness formulation and analysis are the beforehand key tasks for its parameters design.A novel PKM with four degrees of freedom(DOFs)is proposed in this paper.The topology behind it is 2PUS-2PRS parallel mechanism.Its semianalytical stiffness model is frstly obtained,where the generalized Jacobian matrix of 2PUS-2PRS is formulated with the help of the screw theory and the stiffness coeffcients of complicated components are estimated by integrating fnite element analysis and numerical ftting.Under the help of the model,it is predicted that the property of system stiffness distributes within the given workspace,which features symmetry about a certain plane and is also verifed by performing fnite element analysis of the virtual prototype.Furthermore,key parameters affecting the system stiffness are identifed through sensitivity analysis.These provide insights for further optimization design of this PKM.
基金National Natural Science Foundation of China[grant numbers 11532016,91530325].
文摘The accuracy of gradient reconstruction methods on unstructured meshes is analyzed both mathematically and numerically.Mathematical derivations reveal that,for gradient reconstruction based on the Green-Gauss theorem(the GG methods),if the summation of first-and-lower-order terms does not counterbalance in the discretized integral process,which rarely occurs,second-order accurate approximation of face midpoint value is necessary to produce at least first-order accurate gradient.However,gradient reconstruction based on the least-squares approach(the LSQ methods)is at least first-order on arbitrary unstructured grids.Verifications are performed on typical isotropic grid stencils by analyzing the relationship between the discretization error of gradient reconstruction and the discretization error of the face midpoint value approximation of a given analytic function.Meanwhile,the numerical accuracy of gradient reconstruction methods is examined with grid convergence study on typical isotropic grids.Results verify the phenomenon of accuracy degradation for the GG methods when the face midpoint value condition is not satisfied.The LSQ methods are proved to be at least first-order on all tested isotropic grids.To study gradient accuracy effects on inviscid flow simulation,solution errors are quantified using the Method of Manufactured Solutions(MMS)which was validated before adoption by comparing with an exact solution case,i.e.,the 2-dimensional(2D)inviscid isentropic vortex.Numerical results demonstrate that the order of accuracy(OOA)of gradient reconstruction is crucial in determining the OOA of numerical solutions.Solution accuracy deteriorates seriously if gradient reconstruction does not reach first-order.