The problem of production control for a hybrid manufacturing/remanufacturing system under uncertainty is analyzed. Two sources of uncertainty are considered: machines are subject to random breakdowns and repairs, and ...The problem of production control for a hybrid manufacturing/remanufacturing system under uncertainty is analyzed. Two sources of uncertainty are considered: machines are subject to random breakdowns and repairs, and demand level is modeled as a diffusion type stochastic process. Contrary to most of studies where the demand level is considered constant and fewer results where the demand is modeled as a Poisson process with few discrete levels and exponentially distributed switching time, the demand is modeled here as a diffusion type process. In particular Wiener and Ornstein-Uhlenbeck processes for cumulative demands are analyzed. We formulate the stochastic control problem and develop optimality conditions for it in the form of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). We demonstrate that HJB equations are of the second order contrary to the case of constant demand rate (corresponding to the average demand in our case), where HJB equations are linear PDEs. We apply the Kushner-type finite difference scheme and the policy improvement procedure to solve HJB equations numerically and show that the optimal production policy is of hedging-point type for both demand models we have introduced, similarly to the known case of a constant demand. Obtained results allow to compute numerically the optimal production policy in hybrid manufacturing/ remanufacturing systems taking into account the demand variability, and also show that Kushner-type discrete scheme can be successfully applied for solving underlying second order HJB equations.展开更多
This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this explorati...This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.展开更多
Aimed at the problem of stochastic routings for reprocessing operations and highly variable processing times,an open queuing network is utilized to model a typical reprocessing system.In the model,each server is subje...Aimed at the problem of stochastic routings for reprocessing operations and highly variable processing times,an open queuing network is utilized to model a typical reprocessing system.In the model,each server is subject to breakdown and has a finite buffer capacity,while repair times,breakdown times and service time follow an exponential distribution.Based on the decomposition principle and the expansion methodology,an approximation analytical algorithm is proposed to calculate the mean reprocessing time,the throughput of each server and other parameters of the processing system.Then an approach to determining the quality of disassembled parts is suggested,on the basis of which the effect of parts quality on the performance of the reprocessing system is investigated.Numerical examples show that there is a negative correlation between quality of parts and their mean reprocessing time.Furthermore,marginal reprocessing time of the parts decrease with the drop in their quality.展开更多
Aiming to minimize the total production costs in a single planning period, a nonlinear integer programming model for remanufacturing production plans is established considering the influence of different qualities of ...Aiming to minimize the total production costs in a single planning period, a nonlinear integer programming model for remanufacturing production plans is established considering the influence of different qualities of returns acting on production cost. Three different remanufacturing and discarding strategies are adopted to analyze the change rules of the total production costs. The results returns is greater than indicate that when the number of remanufacturing returns of high the demand, preferentially quality and discarding those of low quality can bring better economic benefits due to manufacturing cost reduction. However, when the number of returns is smaller than the demand, there is no need to consider grading of returns, whereas new demand of remanufacturing. parts are required to satisfy the展开更多
Aimed at the remanufacturing system, the effect of the uncertainty of returns' quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station be...Aimed at the remanufacturing system, the effect of the uncertainty of returns' quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system's current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns' quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns' repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns' quality grade.展开更多
First a remanufactming logistics network is con- structed, in which the structure of both the forward logistics and the reverse logistics are of two levels and all the logistics facilities are capacitated. Both the re...First a remanufactming logistics network is con- structed, in which the structure of both the forward logistics and the reverse logistics are of two levels and all the logistics facilities are capacitated. Both the remanufactming products and the new products can be used to meet the demands of customers. Moreover, it is assumed that homogeneous facilities can be designed together into integrated ones, based on which a mixed integer nonlinear programming (MINLP) facility location model of the remanufacturing logistics network with six types of facilities to be sited is built. Then an algorithm based on enumeration for the model is given. The feasible combinations of binary variables are searched by enumeration, and the remaining sub-problems are solved by the LP solver. Finally, the validities of the model and the algorithm are illustrated by means of an example. The result of the sensitivity analysis of parameters indicates that the integration of homogeneous facilities may influence the optimal solution of the problem to a certain degree.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Remanufacturing system is a term of green system project which conforms to the national sustainable development strategy. With the demand of the high adaptability of the varieties of waste machining parts, the short p...Remanufacturing system is a term of green system project which conforms to the national sustainable development strategy. With the demand of the high adaptability of the varieties of waste machining parts, the short product cycle, the low machining cost and the high product quality are offered. Each step of the remanufacturing system from the beginning of the scanning to the accomplishment of the welding was investigted. Aiming at building a remanufacturing system based on totally automatic MIG surfacing via robot, advanced information technology, remanufacturing technology and management, through the control of the pretreatment and the optimization to minimize the time of remanufacturing and realize the remanufacturing on the terminal products of varieties, were applied. The steps mainly include: 1) using the visual sensor which is installed at the end of the Robot to rapidly get the outline data of the machining part and the pretreatment of the data; 2) rebuilding the curved surface based on the outline data and the integrated CAD material object model; 3) building the remanufacturing model based on the CAD material object model and projecting the remanufacturing process; and 4) accomplishing the remanufacture of the machining part by the technology of MIG surfacing.展开更多
In the course of creating immense wealth, manufacturing industry has excessively consumed the resources and energy in the earth, and seriously polluted the environment. To take progress as the sustainable development ...In the course of creating immense wealth, manufacturing industry has excessively consumed the resources and energy in the earth, and seriously polluted the environment. To take progress as the sustainable development way, save resource and improve environment, our nation has been advocating to construct the cycle economy and saving-oriented society. Taking the remanufacturing engineering as the representative, the “4R” rule (Reduce, Reuse, Recycle and Remanufacture) is the important measure to get the goal. Remanufacturing engineering is the industrialization of high-tech maintenance of the waste and worn productions, and is one of the most active factors in “4R”. The development of high and new technology takes the important effect to promote the remanufacturing engineering.展开更多
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
Robot-based remanufacturing system can scan the worn parts and develop the corresponding models, compare them with the standard model, calculate the weld deposit, implement welding path planning, and repair the worn p...Robot-based remanufacturing system can scan the worn parts and develop the corresponding models, compare them with the standard model, calculate the weld deposit, implement welding path planning, and repair the worn parts with MIG surfacing automatically. This paper investigates the welding path planning after calibrating, scanning and model rebuilding. The following aspects are contained: introducing the planning principle, selecting the suitable welding process based on welding parameters (current and speed), calculating welding overlap quantity by the superposition method. Also, it has been verified that good weld profile can be obtained with the optimized parameters.展开更多
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ...The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.展开更多
The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,qual...The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,quality conditions,and remaining life,which seriously affects the efficiency of a remanufacturing scheme design.Aiming to address this problem,a remanufacturing scheme design method based on the reconstruction of incomplete information of used parts is proposed.First,the remaining life of the reconstructed model is predicted by finite element analysis,and the demand for the next life cycle is determined.Second,the scanned 3D damage point cloud data are registered with the original point cloud data using the integral iterative method to construct a missing point cloud model to achieve the restoration of geometric information.Then,according to reverse engineering and laser cladding remanufacturing,the tool remanufacturing process path can be generated by the tool contact point path section line method.Finally,the proposed method is adopted for turbine blades to evaluate the effectiveness and feasibility of the proposed scheme.This study proposes a remanufacturing scheme design method based on the incomplete reconstruction of used part information to solve the uncertain and highly personalized problems in remanufacturing.展开更多
Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented f...Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented for its proactive remanufacturing with setting up to explore the best remanufacturing time point in this work.Considering a certain model of long distance pipeline compressor impeller with the Basquin equation and the design method of impeller,the mathematical relationship between the changes of structure and life of the impeller was established.And the service mapping model between the structure and life was set up and simulated by ANSYS software.Thus,the service mapping model was applied to feedback the original design for proactive remanufacturing.In this work,the best proactive remanufacturing time point of impeller was analyzed with the service mapping model,and the structural parameter values could be optimized at this time point.Meanwhile,in the results of this simulation,it proves that the impeller under this optimization performance could satisfy the impeller operating demands.Therefore,comparing with the traditional optimization design method,the remanufacturing optimized design based on the service mapping model is feasible in proactive remanufacturing for sustainable development.展开更多
The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, ...The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, robust design is presented here to solve theuncertainty. The mathematical model of remanufacturing logistics networks is built based onstochastic distribution of uncontrollable factors, and robust objectives are presented. Theintegration of mathematical simulation and design of experiment method is performed to do sensitiveanalysis. The influence of each factor and level on the system is investigated, and the main factorsand optimum combination are studied. The numbers of factors, level of each factor and designprocess of experiment are investigated as well. Finally, the process of robust design based ondesign of experiment is demonstrated by a detailed example.展开更多
The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is feature...The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line.展开更多
The growing demand of organizations for alternative technologies to reduce environmental damage and meet new legislative issues brought greater focus to the activities of product recovery. One way to recover and reval...The growing demand of organizations for alternative technologies to reduce environmental damage and meet new legislative issues brought greater focus to the activities of product recovery. One way to recover and revalue a product is by remanufacturing, which is defined as the process of recovering a product to its original specifications, promoting the reuse of materials and improving its quality and functionality. However, the context of the remanufacturing industry faces difficulties and is considered unstable and inefficient if compared to manufacturing. In this sense, this paper aims to propose a cell layout based on lean concepts and adapted to the context of remanufacturing, aiming to minimize waste, reduce variability and thereby increase efficiency. The cell layout proposal was based on a literature review and researchers' practical experience in the area. This layout can provide the flexibility to handle the variations inherent in the context of remanufacturing, boosting product recovery and related environmental issues.展开更多
Failure, especially induced by cracks, usually occurred in the service process of chemical equipment, which could cause the medium leakage, fire hazard and explosion and induced the personnel casualty and economic los...Failure, especially induced by cracks, usually occurred in the service process of chemical equipment, which could cause the medium leakage, fire hazard and explosion and induced the personnel casualty and economic losses. To assure the long-term and safety service, it is necessary to apply the remanufacturing technology on the chemical equipment containing cracks. The recent research advances on the remanufacturing, the failure modes and the life extension technology for chemical equipment were reviewed. The engineering strategy of the remanufacturing for the chemical equipment was proposed, which could provide a reasonable and reliable technical route for the remanufacturing operation of chemical equipment. In the strategy, the redesign was also been considered.展开更多
The guide-pieces, used in the process line of steel rolling, were the important components. The guide-pieces, which were slide contacting with the rolled-piece, had a high temperature and high speed. The wear was very...The guide-pieces, used in the process line of steel rolling, were the important components. The guide-pieces, which were slide contacting with the rolled-piece, had a high temperature and high speed. The wear was very serious. The results from failure analysis showed that there were three failure forms in the guide-pieces: the first was the wear during heat friction, the second was the heat fatigue under the cycle of deep heating and deep cooling, and the third was the impact rupture. Among them, the wear was the main reason. To the wear of guide-pieces, there were four mechanisms, namely abrasive wear, adhesive wear, fatigue wear and corrosion wear. The failure analysis to the guide-piece laid the foundation for its remanufacturing.展开更多
This paper deals with the scanner exterior calibration algorithm when the scanner is arranged by the robot and the object scanned is fixed on a rotate device in the Robot Remanufacturing System. The method of calibrat...This paper deals with the scanner exterior calibration algorithm when the scanner is arranged by the robot and the object scanned is fixed on a rotate device in the Robot Remanufacturing System. The method of calibrating the relationship between the scanner coordinate and the robot Tool0, such as the rotation, Rx, Ry, Rz, and the transformation ,Y, Z is studied. The data of Tool0 can be directly obtained from the relationship with the robot base-coordinate. So, the coordinate relationship between the scanner coordinate and the robot base coordinate can be easily gotten. This paper explains the basic algorithm theory, computing method, data collecting process and the resulted data in detail. The calibration algorithm is deduced under the orthogonal coordinate.展开更多
文摘The problem of production control for a hybrid manufacturing/remanufacturing system under uncertainty is analyzed. Two sources of uncertainty are considered: machines are subject to random breakdowns and repairs, and demand level is modeled as a diffusion type stochastic process. Contrary to most of studies where the demand level is considered constant and fewer results where the demand is modeled as a Poisson process with few discrete levels and exponentially distributed switching time, the demand is modeled here as a diffusion type process. In particular Wiener and Ornstein-Uhlenbeck processes for cumulative demands are analyzed. We formulate the stochastic control problem and develop optimality conditions for it in the form of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). We demonstrate that HJB equations are of the second order contrary to the case of constant demand rate (corresponding to the average demand in our case), where HJB equations are linear PDEs. We apply the Kushner-type finite difference scheme and the policy improvement procedure to solve HJB equations numerically and show that the optimal production policy is of hedging-point type for both demand models we have introduced, similarly to the known case of a constant demand. Obtained results allow to compute numerically the optimal production policy in hybrid manufacturing/ remanufacturing systems taking into account the demand variability, and also show that Kushner-type discrete scheme can be successfully applied for solving underlying second order HJB equations.
基金This work was supported by the Humanities and Social Science Fund of Ministry of Education of China(No.20YJA630009)Shandong Natural Science Foundation of China(No.ZR2022MG002).
文摘This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.
文摘Aimed at the problem of stochastic routings for reprocessing operations and highly variable processing times,an open queuing network is utilized to model a typical reprocessing system.In the model,each server is subject to breakdown and has a finite buffer capacity,while repair times,breakdown times and service time follow an exponential distribution.Based on the decomposition principle and the expansion methodology,an approximation analytical algorithm is proposed to calculate the mean reprocessing time,the throughput of each server and other parameters of the processing system.Then an approach to determining the quality of disassembled parts is suggested,on the basis of which the effect of parts quality on the performance of the reprocessing system is investigated.Numerical examples show that there is a negative correlation between quality of parts and their mean reprocessing time.Furthermore,marginal reprocessing time of the parts decrease with the drop in their quality.
基金The National Natural Science Foundation of China(No.70671022)
文摘Aiming to minimize the total production costs in a single planning period, a nonlinear integer programming model for remanufacturing production plans is established considering the influence of different qualities of returns acting on production cost. Three different remanufacturing and discarding strategies are adopted to analyze the change rules of the total production costs. The results returns is greater than indicate that when the number of remanufacturing returns of high the demand, preferentially quality and discarding those of low quality can bring better economic benefits due to manufacturing cost reduction. However, when the number of returns is smaller than the demand, there is no need to consider grading of returns, whereas new demand of remanufacturing. parts are required to satisfy the
基金The Program for Special Talent in Six Fields of Jiangsu Province(No.2013ZBZZ-046)the Program of Lanzhou Technology Development(No.2014-1-175)
文摘Aimed at the remanufacturing system, the effect of the uncertainty of returns' quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system's current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns' quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns' repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns' quality grade.
基金The National Natural Science Foundation of China(No.70472033).
文摘First a remanufactming logistics network is con- structed, in which the structure of both the forward logistics and the reverse logistics are of two levels and all the logistics facilities are capacitated. Both the remanufactming products and the new products can be used to meet the demands of customers. Moreover, it is assumed that homogeneous facilities can be designed together into integrated ones, based on which a mixed integer nonlinear programming (MINLP) facility location model of the remanufacturing logistics network with six types of facilities to be sited is built. Then an algorithm based on enumeration for the model is given. The feasible combinations of binary variables are searched by enumeration, and the remaining sub-problems are solved by the LP solver. Finally, the validities of the model and the algorithm are illustrated by means of an example. The result of the sensitivity analysis of parameters indicates that the integration of homogeneous facilities may influence the optimal solution of the problem to a certain degree.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
文摘Remanufacturing system is a term of green system project which conforms to the national sustainable development strategy. With the demand of the high adaptability of the varieties of waste machining parts, the short product cycle, the low machining cost and the high product quality are offered. Each step of the remanufacturing system from the beginning of the scanning to the accomplishment of the welding was investigted. Aiming at building a remanufacturing system based on totally automatic MIG surfacing via robot, advanced information technology, remanufacturing technology and management, through the control of the pretreatment and the optimization to minimize the time of remanufacturing and realize the remanufacturing on the terminal products of varieties, were applied. The steps mainly include: 1) using the visual sensor which is installed at the end of the Robot to rapidly get the outline data of the machining part and the pretreatment of the data; 2) rebuilding the curved surface based on the outline data and the integrated CAD material object model; 3) building the remanufacturing model based on the CAD material object model and projecting the remanufacturing process; and 4) accomplishing the remanufacture of the machining part by the technology of MIG surfacing.
文摘In the course of creating immense wealth, manufacturing industry has excessively consumed the resources and energy in the earth, and seriously polluted the environment. To take progress as the sustainable development way, save resource and improve environment, our nation has been advocating to construct the cycle economy and saving-oriented society. Taking the remanufacturing engineering as the representative, the “4R” rule (Reduce, Reuse, Recycle and Remanufacture) is the important measure to get the goal. Remanufacturing engineering is the industrialization of high-tech maintenance of the waste and worn productions, and is one of the most active factors in “4R”. The development of high and new technology takes the important effect to promote the remanufacturing engineering.
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
文摘Robot-based remanufacturing system can scan the worn parts and develop the corresponding models, compare them with the standard model, calculate the weld deposit, implement welding path planning, and repair the worn parts with MIG surfacing automatically. This paper investigates the welding path planning after calibrating, scanning and model rebuilding. The following aspects are contained: introducing the planning principle, selecting the suitable welding process based on welding parameters (current and speed), calculating welding overlap quantity by the superposition method. Also, it has been verified that good weld profile can be obtained with the optimized parameters.
基金National Natural Science Foundation of China(Grant Nos.51805385,71471143)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB265)Center for Service Science and Engineering of Wuhan University of Science and Technology(Grant No.CSSE2017KA04)
文摘The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.
基金Supported by Plateau Disciplines in ShanghaiNational Natural Science Foundation of China (Grant No. 51675388)Hubei Provincial Department of Education of China (Grant No. D20181102)
文摘The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,quality conditions,and remaining life,which seriously affects the efficiency of a remanufacturing scheme design.Aiming to address this problem,a remanufacturing scheme design method based on the reconstruction of incomplete information of used parts is proposed.First,the remaining life of the reconstructed model is predicted by finite element analysis,and the demand for the next life cycle is determined.Second,the scanned 3D damage point cloud data are registered with the original point cloud data using the integral iterative method to construct a missing point cloud model to achieve the restoration of geometric information.Then,according to reverse engineering and laser cladding remanufacturing,the tool remanufacturing process path can be generated by the tool contact point path section line method.Finally,the proposed method is adopted for turbine blades to evaluate the effectiveness and feasibility of the proposed scheme.This study proposes a remanufacturing scheme design method based on the incomplete reconstruction of used part information to solve the uncertain and highly personalized problems in remanufacturing.
基金Project(2011CB013406)supported by National Basic Research Program of ChinaProjects(51305119,51375133)supported by National Natural Science Foundation of China
文摘Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented for its proactive remanufacturing with setting up to explore the best remanufacturing time point in this work.Considering a certain model of long distance pipeline compressor impeller with the Basquin equation and the design method of impeller,the mathematical relationship between the changes of structure and life of the impeller was established.And the service mapping model between the structure and life was set up and simulated by ANSYS software.Thus,the service mapping model was applied to feedback the original design for proactive remanufacturing.In this work,the best proactive remanufacturing time point of impeller was analyzed with the service mapping model,and the structural parameter values could be optimized at this time point.Meanwhile,in the results of this simulation,it proves that the impeller under this optimization performance could satisfy the impeller operating demands.Therefore,comparing with the traditional optimization design method,the remanufacturing optimized design based on the service mapping model is feasible in proactive remanufacturing for sustainable development.
基金This project is supported by Provincial Natural Science Foundation of Shanghai, China (No. 02ZH14060).
文摘The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, robust design is presented here to solve theuncertainty. The mathematical model of remanufacturing logistics networks is built based onstochastic distribution of uncontrollable factors, and robust objectives are presented. Theintegration of mathematical simulation and design of experiment method is performed to do sensitiveanalysis. The influence of each factor and level on the system is investigated, and the main factorsand optimum combination are studied. The numbers of factors, level of each factor and designprocess of experiment are investigated as well. Finally, the process of robust design based ondesign of experiment is demonstrated by a detailed example.
基金Projects(51975099,51775086)supported by the Natural Science Foundation of China。
文摘The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line.
文摘The growing demand of organizations for alternative technologies to reduce environmental damage and meet new legislative issues brought greater focus to the activities of product recovery. One way to recover and revalue a product is by remanufacturing, which is defined as the process of recovering a product to its original specifications, promoting the reuse of materials and improving its quality and functionality. However, the context of the remanufacturing industry faces difficulties and is considered unstable and inefficient if compared to manufacturing. In this sense, this paper aims to propose a cell layout based on lean concepts and adapted to the context of remanufacturing, aiming to minimize waste, reduce variability and thereby increase efficiency. The cell layout proposal was based on a literature review and researchers' practical experience in the area. This layout can provide the flexibility to handle the variations inherent in the context of remanufacturing, boosting product recovery and related environmental issues.
文摘Failure, especially induced by cracks, usually occurred in the service process of chemical equipment, which could cause the medium leakage, fire hazard and explosion and induced the personnel casualty and economic losses. To assure the long-term and safety service, it is necessary to apply the remanufacturing technology on the chemical equipment containing cracks. The recent research advances on the remanufacturing, the failure modes and the life extension technology for chemical equipment were reviewed. The engineering strategy of the remanufacturing for the chemical equipment was proposed, which could provide a reasonable and reliable technical route for the remanufacturing operation of chemical equipment. In the strategy, the redesign was also been considered.
文摘The guide-pieces, used in the process line of steel rolling, were the important components. The guide-pieces, which were slide contacting with the rolled-piece, had a high temperature and high speed. The wear was very serious. The results from failure analysis showed that there were three failure forms in the guide-pieces: the first was the wear during heat friction, the second was the heat fatigue under the cycle of deep heating and deep cooling, and the third was the impact rupture. Among them, the wear was the main reason. To the wear of guide-pieces, there were four mechanisms, namely abrasive wear, adhesive wear, fatigue wear and corrosion wear. The failure analysis to the guide-piece laid the foundation for its remanufacturing.
文摘This paper deals with the scanner exterior calibration algorithm when the scanner is arranged by the robot and the object scanned is fixed on a rotate device in the Robot Remanufacturing System. The method of calibrating the relationship between the scanner coordinate and the robot Tool0, such as the rotation, Rx, Ry, Rz, and the transformation ,Y, Z is studied. The data of Tool0 can be directly obtained from the relationship with the robot base-coordinate. So, the coordinate relationship between the scanner coordinate and the robot base coordinate can be easily gotten. This paper explains the basic algorithm theory, computing method, data collecting process and the resulted data in detail. The calibration algorithm is deduced under the orthogonal coordinate.