As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performan...As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performance. Effective fault tolerance techniques are essential to improve the yield of such complex chips. In this paper, a core-level redundancy scheme called N+M is proposed to improve N-core processors’ yield by providing M spare cores. In such architecture, topology is an important factor because it greatly affects the processors’ performance. The concept of logical topology and a topology reconfiguration problem are introduced, which is able to transparently provide target topology with lowest performance degradation as the presence of faulty cores on-chip. A row rippling and column stealing (RRCS) algorithm is also proposed. Results show that PRCS can give solutions with average 13.8% degradation with negligible computing time.展开更多
Purpose–The purpose of this paper is to propose a fault-tolerant technology for increasing the durability of application programs when evolutionary computation is performed by fast parallel processing on many-core pr...Purpose–The purpose of this paper is to propose a fault-tolerant technology for increasing the durability of application programs when evolutionary computation is performed by fast parallel processing on many-core processors such as graphics processing units(GPUs)and multi-core processors(MCPs).Design/methodology/approach–For distributed genetic algorithm(GA)models,the paper proposes a method where an island’s ID number is added to the header of data transferred by this island for use in fault detection.Findings–The paper has shown that the processing time of the proposed idea is practically negligible in applications and also shown that an optimal solution can be obtained even with a single stuck-at fault or a transient fault,and that increasing the number of parallel threads makes the system less susceptible to faults.Originality/value–The study described in this paper is a new approach to increase the sustainability of application program using distributed GA on GPUs and MCPs.展开更多
The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively ...The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory.To date,the practical implementation of the sequential SG experiment has not been fully achieved.In this study,we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment.The specific parametric shallow quantum circuits,which are suitable for the limitations of current noisy quantum hardware,are given to replicate the functionality of SG devices with the ability to perform measurements in different directions.Surprisingly,it has been demonstrated that Wigner’s SG interferometer can be readily implemented in our sequential quantum circuit.With the utilization of the identical circuits,it is also feasible to implement Wheeler’s delayed-choice experiment.We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments,and the simulation results demonstrate a strong alignment with theoretical predictions.With the rapid advancement of cloud-based quantum computing,such as BAQIS Quafu,it is our belief that the proposed solution is well-suited for deployment on the cloud,allowing for public accessibility.Our findings not only expand the potential applications of quantum computers,but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.展开更多
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity...A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.展开更多
The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks ...The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.展开更多
Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its performance is very relevant to network virtualizing. Nowadays its implementations are mainly ...Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its performance is very relevant to network virtualizing. Nowadays its implementations are mainly based on the idea of Software Define Network (SDN). Open vSwitch is a sort of software virtual switch, which conforms to the OpenFlow protocol standard. It is basically deployed in the Linux kernel hypervisor. This leads to its performance relatively poor because of the limited system resource. In turn, the packet process throughput is very low.In this paper, we present a Cavium-based Open vSwitch implementation. The Cavium platform features with multi cores and couples of hard ac-celerators. It supports zero-copy of packets and handles packet more quickly. We also carry some experiments on the platform. It indicates that we can use it in the enterprise network or campus network as convergence layer and core layer device.展开更多
There are varieties of embedded systems in the world. It is a big challenge to optimize the instruction sets of System on Chips (SoCs) according to different systems' working environments. The idea of programmable...There are varieties of embedded systems in the world. It is a big challenge to optimize the instruction sets of System on Chips (SoCs) according to different systems' working environments. The idea of programmable instruction set is an effective method to gain embedded system's re-configurability. This letter presents a logic module for Java processor to be capable of using programmable instruction set. Cost (area, power, and timing) of the module is trivial. Such module is also reusable for other embedded system solutions besides Java systems.展开更多
Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at t...Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.展开更多
Network processors (NPs) are widely used for programmable and high-performance networks;however, the programs for NPs are less portable, the number of NP program developers is small, and the development cost is high. ...Network processors (NPs) are widely used for programmable and high-performance networks;however, the programs for NPs are less portable, the number of NP program developers is small, and the development cost is high. To solve these problems, this paper proposes an open, high-level, and portable programming language called “Phonepl”, which is independent from vendor-specific proprietary hardware and software but can be translated into an NP program with high performance especially in the memory use. A common NP hardware feature is that a whole packet is stored in DRAM, but the header is cached in SRAM. Phonepl has a hardware-independent abstraction of this feature so that it allows programmers mostly unconscious of this hardware feature. To implement the abstraction, four representations of packet data type that cover all the packet operations (including substring, concatenation, input, and output) are introduced. Phonepl have been implemented on Octeon NPs used in plug-ins for a network-virtualization environment called the VNode Infrastructure, and several packet-handling programs were evaluated. As for the evaluation result, the conversion throughput is close to the wire rate, i.e., 10 Gbps, and no packet loss (by cache miss) occurs when the packet size is 256 bytes or larger.展开更多
Recent architectures of multi-core systems may have a relatively large number of cores that typically ranges from tens to hundreds;therefore called many-core systems.Such systems require an efficient interconnection n...Recent architectures of multi-core systems may have a relatively large number of cores that typically ranges from tens to hundreds;therefore called many-core systems.Such systems require an efficient interconnection network that tries to address two major problems.First,the overhead of power and area cost and its effect on scalability.Second,high access latency is caused by multiple cores’simultaneous accesses of the same shared module.This paper presents an interconnection scheme called N-conjugate Shuffle Clusters(NCSC)based on multi-core multicluster architecture to reduce the overhead of the just mentioned problems.NCSC eliminated the need for router devices and their complexity and hence reduced the power and area costs.It also resigned and distributed the shared caches across the interconnection network to increase the ability for simultaneous access and hence reduce the access latency.For intra-cluster communication,Multi-port Content Addressable Memory(MPCAM)is used.The experimental results using four clusters and four cores each indicated that the average access latency for a write process is 1.14785±0.04532 ns which is nearly equal to the latency of a write operation in MPCAM.Moreover,it was demonstrated that the average read latency within a cluster is 1.26226±0.090591 ns and around 1.92738±0.139588 ns for read access between cores from different clusters.展开更多
In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homoge...In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.展开更多
Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including...Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.展开更多
With the development of computer technology, network bandwidth and network traffic continue to increase. Considering the large data flow, it is imperative to perform inspection effectively on network packets. In order...With the development of computer technology, network bandwidth and network traffic continue to increase. Considering the large data flow, it is imperative to perform inspection effectively on network packets. In order to find a solution of deep packet inspection which can appropriate to the current network environment, this paper built a deep packet inspection system based on many-core platform, and in this way, verified the feasibility to implement a deep packet inspection system under many-core platform with both high performance and low consumption. After testing and analysis of the system performance, it has been found that the deep packet inspection based on many-core platform TILE_Gx36 [1] [2] can process network traffic of which the bandwidth reaches up to 4 Gbps. To a certain extent, the performance has improved compared to most deep packet inspection system based on X86 platform at present.展开更多
Simulators are generally used during the design of computer architectures. Typically, different simulators with different levels of complexity, speed and accuracy are used. However, for early design space exploration,...Simulators are generally used during the design of computer architectures. Typically, different simulators with different levels of complexity, speed and accuracy are used. However, for early design space exploration, simulators with less complexity, high simulation speed and reasonable accuracy are desired. It is also required that these simulators have a short development time and that changes in the design require less effort in the implementation in order to perform experiments and see the effects of changes in the design. These simulators are termed high-level simulators in the context of computer architecture. In this paper, we present multiple levels of abstractions in a high-level simulation of a general-purpose many-core system, where the objective of every level is to improve the accuracy in simulation without significantly affecting the complexity and simulation speed.展开更多
In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware m...In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.展开更多
基金the National Natural Science Foundation of China (Nos. 60633060, 60606008, and 60576031)the National Key Basic Research and Development (973) Program of China (973)(Nos. 2005CB321604 and 2005CB321605)the fund of Chinese Academy of Sciences (No. 20074010) due to the President Scholarship
文摘As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performance. Effective fault tolerance techniques are essential to improve the yield of such complex chips. In this paper, a core-level redundancy scheme called N+M is proposed to improve N-core processors’ yield by providing M spare cores. In such architecture, topology is an important factor because it greatly affects the processors’ performance. The concept of logical topology and a topology reconfiguration problem are introduced, which is able to transparently provide target topology with lowest performance degradation as the presence of faulty cores on-chip. A row rippling and column stealing (RRCS) algorithm is also proposed. Results show that PRCS can give solutions with average 13.8% degradation with negligible computing time.
文摘Purpose–The purpose of this paper is to propose a fault-tolerant technology for increasing the durability of application programs when evolutionary computation is performed by fast parallel processing on many-core processors such as graphics processing units(GPUs)and multi-core processors(MCPs).Design/methodology/approach–For distributed genetic algorithm(GA)models,the paper proposes a method where an island’s ID number is added to the header of data transferred by this island for use in fault detection.Findings–The paper has shown that the processing time of the proposed idea is practically negligible in applications and also shown that an optimal solution can be obtained even with a single stuck-at fault or a transient fault,and that increasing the number of parallel threads makes the system less susceptible to faults.Originality/value–The study described in this paper is a new approach to increase the sustainability of application program using distributed GA on GPUs and MCPs.
基金supported by Beijing Academy of Quantum Information Sciencessupported by the State Key Laboratory of Low Dimensional Quantum Physics+2 种基金the Start-up Fund provided by Tsinghua Universitythe financial support provided by the National Natural Science Foundation of China(Grant No.92065113)the Anhui Initiative in Quantum Information Technologies。
文摘The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory.To date,the practical implementation of the sequential SG experiment has not been fully achieved.In this study,we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment.The specific parametric shallow quantum circuits,which are suitable for the limitations of current noisy quantum hardware,are given to replicate the functionality of SG devices with the ability to perform measurements in different directions.Surprisingly,it has been demonstrated that Wigner’s SG interferometer can be readily implemented in our sequential quantum circuit.With the utilization of the identical circuits,it is also feasible to implement Wheeler’s delayed-choice experiment.We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments,and the simulation results demonstrate a strong alignment with theoretical predictions.With the rapid advancement of cloud-based quantum computing,such as BAQIS Quafu,it is our belief that the proposed solution is well-suited for deployment on the cloud,allowing for public accessibility.Our findings not only expand the potential applications of quantum computers,but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.
文摘A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.60921062)the National Natural Science Foundation of China (Grant No.60873014)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos.61003082 and 60903059)
文摘The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.
文摘Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its performance is very relevant to network virtualizing. Nowadays its implementations are mainly based on the idea of Software Define Network (SDN). Open vSwitch is a sort of software virtual switch, which conforms to the OpenFlow protocol standard. It is basically deployed in the Linux kernel hypervisor. This leads to its performance relatively poor because of the limited system resource. In turn, the packet process throughput is very low.In this paper, we present a Cavium-based Open vSwitch implementation. The Cavium platform features with multi cores and couples of hard ac-celerators. It supports zero-copy of packets and handles packet more quickly. We also carry some experiments on the platform. It indicates that we can use it in the enterprise network or campus network as convergence layer and core layer device.
基金Supported by the Guangzhou Key Technology R&D Program (No.2007Z2-D0011)
文摘There are varieties of embedded systems in the world. It is a big challenge to optimize the instruction sets of System on Chips (SoCs) according to different systems' working environments. The idea of programmable instruction set is an effective method to gain embedded system's re-configurability. This letter presents a logic module for Java processor to be capable of using programmable instruction set. Cost (area, power, and timing) of the module is trivial. Such module is also reusable for other embedded system solutions besides Java systems.
基金Project(2008AA01A201) supported the National High-tech Research and Development Program of ChinaProjects(60833004, 60633050) supported by the National Natural Science Foundation of China
文摘Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.
文摘Network processors (NPs) are widely used for programmable and high-performance networks;however, the programs for NPs are less portable, the number of NP program developers is small, and the development cost is high. To solve these problems, this paper proposes an open, high-level, and portable programming language called “Phonepl”, which is independent from vendor-specific proprietary hardware and software but can be translated into an NP program with high performance especially in the memory use. A common NP hardware feature is that a whole packet is stored in DRAM, but the header is cached in SRAM. Phonepl has a hardware-independent abstraction of this feature so that it allows programmers mostly unconscious of this hardware feature. To implement the abstraction, four representations of packet data type that cover all the packet operations (including substring, concatenation, input, and output) are introduced. Phonepl have been implemented on Octeon NPs used in plug-ins for a network-virtualization environment called the VNode Infrastructure, and several packet-handling programs were evaluated. As for the evaluation result, the conversion throughput is close to the wire rate, i.e., 10 Gbps, and no packet loss (by cache miss) occurs when the packet size is 256 bytes or larger.
文摘Recent architectures of multi-core systems may have a relatively large number of cores that typically ranges from tens to hundreds;therefore called many-core systems.Such systems require an efficient interconnection network that tries to address two major problems.First,the overhead of power and area cost and its effect on scalability.Second,high access latency is caused by multiple cores’simultaneous accesses of the same shared module.This paper presents an interconnection scheme called N-conjugate Shuffle Clusters(NCSC)based on multi-core multicluster architecture to reduce the overhead of the just mentioned problems.NCSC eliminated the need for router devices and their complexity and hence reduced the power and area costs.It also resigned and distributed the shared caches across the interconnection network to increase the ability for simultaneous access and hence reduce the access latency.For intra-cluster communication,Multi-port Content Addressable Memory(MPCAM)is used.The experimental results using four clusters and four cores each indicated that the average access latency for a write process is 1.14785±0.04532 ns which is nearly equal to the latency of a write operation in MPCAM.Moreover,it was demonstrated that the average read latency within a cluster is 1.26226±0.090591 ns and around 1.92738±0.139588 ns for read access between cores from different clusters.
基金This work is supported by the National Key Research and Development Plan program of the Ministry of Science and Technology of China(No.2016YFB0201100)Additionally,this work is supported by the National Laboratory for Marine Science and Technology(Qingdao)Major Project of the Aoshan Science and Technology Innovation Program(No.2018ASKJ01-04)the Open Fundation of Key Laboratory of Marine Science and Numerical Simulation,Ministry of Natural Resources(No.2021-YB-02).
文摘In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.
基金The National High-Tech Research and Development Program of China(863 Program)2014AA01A705
文摘Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.
文摘With the development of computer technology, network bandwidth and network traffic continue to increase. Considering the large data flow, it is imperative to perform inspection effectively on network packets. In order to find a solution of deep packet inspection which can appropriate to the current network environment, this paper built a deep packet inspection system based on many-core platform, and in this way, verified the feasibility to implement a deep packet inspection system under many-core platform with both high performance and low consumption. After testing and analysis of the system performance, it has been found that the deep packet inspection based on many-core platform TILE_Gx36 [1] [2] can process network traffic of which the bandwidth reaches up to 4 Gbps. To a certain extent, the performance has improved compared to most deep packet inspection system based on X86 platform at present.
文摘Simulators are generally used during the design of computer architectures. Typically, different simulators with different levels of complexity, speed and accuracy are used. However, for early design space exploration, simulators with less complexity, high simulation speed and reasonable accuracy are desired. It is also required that these simulators have a short development time and that changes in the design require less effort in the implementation in order to perform experiments and see the effects of changes in the design. These simulators are termed high-level simulators in the context of computer architecture. In this paper, we present multiple levels of abstractions in a high-level simulation of a general-purpose many-core system, where the objective of every level is to improve the accuracy in simulation without significantly affecting the complexity and simulation speed.
基金supported partially by the National High Technical Research and Development Program of China (863 Program) under Grants No. 2011AA040101, No. 2008AA01Z134the National Natural Science Foundation of China under Grants No. 61003251, No. 61172049, No. 61173150+2 种基金the Doctoral Fund of Ministry of Education of China under Grant No. 20100006110015Beijing Municipal Natural Science Foundation under Grant No. Z111100054011078the 2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science under Grant No. Z121101002812005
文摘In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.