The purpose of this paper is to investigate the feasibility of using a similarity coefficient map(SCM) in improving the morphological evaluation of T2* weighted(T2*W) magnatic resonance imaging(MRI) for renal ...The purpose of this paper is to investigate the feasibility of using a similarity coefficient map(SCM) in improving the morphological evaluation of T2* weighted(T2*W) magnatic resonance imaging(MRI) for renal cancer.Simulation studies and in vivo 12-echo T2*W experiments for renal cancers were performed for this purpose.The results of the first simulation study suggest that an SCM can reveal small structures which are hard to distinguish from the background tissue in T2*W images and the corresponding T2* map.The capability of improving the morphological evaluation is likely due to the improvement in the signal-to-noise ratio(SNR) and the carrier-to-noise ratio(CNR) by using the SCM technique.Compared with T2* W images,an SCM can improve the SNR by a factor ranging from 1.87 to 2.47.Compared with T2* maps,an SCM can improve the SNR by a factor ranging from 3.85 to 33.31.Compared with T2*W images,an SCM can improve the CNR by a factor ranging from 2.09 to 2.43.Compared with T2* maps,an SCM can improve the CNR by a factor ranging from 1.94 to 8.14.For a given noise level,the improvements of the SNR and the CNR depend mainly on the original SNRs and CNRs in T2*W images,respectively.In vivo experiments confirmed the results of the first simulation study.The results of the second simulation study suggest that more echoes are used to generate the SCM,and higher SNRs and CNRs can be achieved in SCMs.In conclusion,an SCM can provide improved morphological evaluation of T2*W MR images for renal cancer by unveiling fine structures which are ambiguous or invisible in the corresponding T2*W MR images and T2* maps.Furthermore,in practical applications,for a fixed total sampling time,one should increase the number of echoes as much as possible to achieve SCMs with better SNRs and CNRs.展开更多
Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, ...Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multiecho T*2-w MRI. Generated maps were investigated from signal-to-noise ratio(SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.展开更多
The estimation of the precise performance of existing multistage axial-flow compressors of gas turbine engines is fast becoming a great concern, as the use of gas turbine engines in the power generation and in the mil...The estimation of the precise performance of existing multistage axial-flow compressors of gas turbine engines is fast becoming a great concern, as the use of gas turbine engines in the power generation and in the military industry increases, in order to reduce the analysis performance error of the traditional scaling method, a new scaling method for estimating the characteristics of multistage axial flow compressors is proposed. This novel method is based on experimental and partial data provided by engine manufacturers. Taking the effect of density-change into account, we introduce the average infinitesimal stage concept, and thereby divide the compression process into an infinite number of infinitesimal processes corresponding to infinitesimal stages. Subsequently, we adopt the corrected Reynolds analogy method for compressible flow calculation in order to ensure much better compliance with the similarity criterion, Validation checks show that the proposed method has enough precision to predict the off-design performance characteristics of multistage axial flow compressors.展开更多
This paper analyzes structural characteristics of signal vectors in combinational circuits with RTL description. Then, this paper presents the concept of the Basic Similar Circuit (BSC), a circuit constructed by compr...This paper analyzes structural characteristics of signal vectors in combinational circuits with RTL description. Then, this paper presents the concept of the Basic Similar Circuit (BSC), a circuit constructed by compressing the bit-width of vectored vectors in the original circuit. BSC shrinks the scale of the original circuit, thus improving the ATPG efficiency. Test patterns are derived from adjustment and assembling of precomputed sub-circuit test sets. Based on the deterministic algorithm, the ATPG method presented in this paper combines deterministic algorithms and undetermined methods.展开更多
A maximum a posteriori( MAP) algorithm is proposed to improve the accuracy of super resolution( SR) reconstruction in traditional methods. The algorithm applies both joints image registration and SR reconstruction...A maximum a posteriori( MAP) algorithm is proposed to improve the accuracy of super resolution( SR) reconstruction in traditional methods. The algorithm applies both joints image registration and SR reconstruction in the framework,but separates them in the process of iteratiion. Firstly,we estimate the shifting parameters through two lowresolution( LR) images and use the parameters to reconstruct initial HR images. Then,we update the shifting parameters using HR images. The aforementioned steps are repeated until the ideal HR images are obtained. The metrics such as PSNR and SSIM are used to fully evaluate the quality of the reconstructed image. Experimental results indicate that the proposed method can enhance image resolution efficiently.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707701)the National Key Technology R&D Program of China(Grant Nos. 2011BAI12B05 and 2012BAI23B07)
文摘The purpose of this paper is to investigate the feasibility of using a similarity coefficient map(SCM) in improving the morphological evaluation of T2* weighted(T2*W) magnatic resonance imaging(MRI) for renal cancer.Simulation studies and in vivo 12-echo T2*W experiments for renal cancers were performed for this purpose.The results of the first simulation study suggest that an SCM can reveal small structures which are hard to distinguish from the background tissue in T2*W images and the corresponding T2* map.The capability of improving the morphological evaluation is likely due to the improvement in the signal-to-noise ratio(SNR) and the carrier-to-noise ratio(CNR) by using the SCM technique.Compared with T2* W images,an SCM can improve the SNR by a factor ranging from 1.87 to 2.47.Compared with T2* maps,an SCM can improve the SNR by a factor ranging from 3.85 to 33.31.Compared with T2*W images,an SCM can improve the CNR by a factor ranging from 2.09 to 2.43.Compared with T2* maps,an SCM can improve the CNR by a factor ranging from 1.94 to 8.14.For a given noise level,the improvements of the SNR and the CNR depend mainly on the original SNRs and CNRs in T2*W images,respectively.In vivo experiments confirmed the results of the first simulation study.The results of the second simulation study suggest that more echoes are used to generate the SCM,and higher SNRs and CNRs can be achieved in SCMs.In conclusion,an SCM can provide improved morphological evaluation of T2*W MR images for renal cancer by unveiling fine structures which are ambiguous or invisible in the corresponding T2*W MR images and T2* maps.Furthermore,in practical applications,for a fixed total sampling time,one should increase the number of echoes as much as possible to achieve SCMs with better SNRs and CNRs.
基金Project supported in part by the National High Technology Research and Development Program of China(Grant Nos.2015AA043203 and 2012AA02A604)the National Natural Science Foundation of China(Grant Nos.81171402+8 种基金61471349and 81501463)the Innovative Research Team Program of Guangdong Province,China(Grant No.2011S013)the Science and Technological Program for Higher Education,Science and Researchand Health Care Institutions of Guangdong ProvinceChina(Grant No.2011108101001)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030310360)the Fundamental Research Program of Shenzhen City,China(Grant No.JCYJ20140417113430639)Beijing Center for Mathematics and Information Interdisciplinary Sciences,China
文摘Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multiecho T*2-w MRI. Generated maps were investigated from signal-to-noise ratio(SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.
基金This project is supported by National Natural Science Foundation of China (No.59970220).
文摘The estimation of the precise performance of existing multistage axial-flow compressors of gas turbine engines is fast becoming a great concern, as the use of gas turbine engines in the power generation and in the military industry increases, in order to reduce the analysis performance error of the traditional scaling method, a new scaling method for estimating the characteristics of multistage axial flow compressors is proposed. This novel method is based on experimental and partial data provided by engine manufacturers. Taking the effect of density-change into account, we introduce the average infinitesimal stage concept, and thereby divide the compression process into an infinite number of infinitesimal processes corresponding to infinitesimal stages. Subsequently, we adopt the corrected Reynolds analogy method for compressible flow calculation in order to ensure much better compliance with the similarity criterion, Validation checks show that the proposed method has enough precision to predict the off-design performance characteristics of multistage axial flow compressors.
基金supported by National Natural Science Foundation of China under grant No.69733010,69973016
文摘This paper analyzes structural characteristics of signal vectors in combinational circuits with RTL description. Then, this paper presents the concept of the Basic Similar Circuit (BSC), a circuit constructed by compressing the bit-width of vectored vectors in the original circuit. BSC shrinks the scale of the original circuit, thus improving the ATPG efficiency. Test patterns are derived from adjustment and assembling of precomputed sub-circuit test sets. Based on the deterministic algorithm, the ATPG method presented in this paper combines deterministic algorithms and undetermined methods.
基金Supported by the National Natural Science Foundation of China(61405191)
文摘A maximum a posteriori( MAP) algorithm is proposed to improve the accuracy of super resolution( SR) reconstruction in traditional methods. The algorithm applies both joints image registration and SR reconstruction in the framework,but separates them in the process of iteratiion. Firstly,we estimate the shifting parameters through two lowresolution( LR) images and use the parameters to reconstruct initial HR images. Then,we update the shifting parameters using HR images. The aforementioned steps are repeated until the ideal HR images are obtained. The metrics such as PSNR and SSIM are used to fully evaluate the quality of the reconstructed image. Experimental results indicate that the proposed method can enhance image resolution efficiently.