The two gate formula for a diffusion X_t in R^n is considered.The formula gives an expressionof the density function of X_t in terms of the path integral of the Brownian bridge starting from xand ending on y at time t.
In this paper, we consider the trace of generalized operators and inverse Weyl transformation.First of all we repeat the definition of test operators and generalized operators given in [18],denoting L~2(R) by H.
Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, seque...Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.展开更多
For a harmonic map between two hyperkäher manifolds,we prove a Weitzenböck type formula for the defining quantity of quaternionic maps,and apply it to harmonic morphisms.We also provide a sufficient and nece...For a harmonic map between two hyperkäher manifolds,we prove a Weitzenböck type formula for the defining quantity of quaternionic maps,and apply it to harmonic morphisms.We also provide a sufficient and necessary condition for a smooth map being quaternionic.展开更多
In this paper, by using the Frobenius morphism and the multiplication formulas of the generic extension monoid algebra, the authors first give a presentation of the degenerate Ringel-Hall algebra, and then construct t...In this paper, by using the Frobenius morphism and the multiplication formulas of the generic extension monoid algebra, the authors first give a presentation of the degenerate Ringel-Hall algebra, and then construct the Gr¨obner-Shirshov basis for degenerate Ringel-Hall algebras of type F_4.展开更多
基金This project is supported by the National Natural Science Foundation of China
文摘The two gate formula for a diffusion X_t in R^n is considered.The formula gives an expressionof the density function of X_t in terms of the path integral of the Brownian bridge starting from xand ending on y at time t.
文摘In this paper, we consider the trace of generalized operators and inverse Weyl transformation.First of all we repeat the definition of test operators and generalized operators given in [18],denoting L~2(R) by H.
文摘Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.
文摘For a harmonic map between two hyperkäher manifolds,we prove a Weitzenböck type formula for the defining quantity of quaternionic maps,and apply it to harmonic morphisms.We also provide a sufficient and necessary condition for a smooth map being quaternionic.
基金supported by the National Natural Science Foundation of China(Nos.11361056,11271043,11471186)
文摘In this paper, by using the Frobenius morphism and the multiplication formulas of the generic extension monoid algebra, the authors first give a presentation of the degenerate Ringel-Hall algebra, and then construct the Gr¨obner-Shirshov basis for degenerate Ringel-Hall algebras of type F_4.