期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Optimization Criterion for Generalized Marginal Fisher Analysis on Undersampled Problems
1
作者 Wu-Yi Yang Sheng-Xing Liu +1 位作者 Tai-Song Jin Xiao-Mei Xu 《International Journal of Automation and computing》 EI 2011年第2期193-200,共8页
Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effec... Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effectively overcome the limitation of linear discriminant analysis (LDA) due to data distribution assumption and available projection directions.However,MFA confronts the undersampled problems.Generalized marginal Fisher analysis (GMFA) based on a new optimization criterion is presented,which is applicable to the undersampled problems.The solutions to the proposed criterion for GMFA are derived,which can be characterized in a closed form.Among the solutions,two specific algorithms,namely,normal MFA (NMFA) and orthogonal MFA (OMFA),are studied,and the methods to implement NMFA and OMFA are proposed.A comparative study on the undersampled problem of face recognition is conducted to evaluate NMFA and OMFA in terms of classification accuracy,which demonstrates the effectiveness of the proposed algorithms. 展开更多
关键词 Linear discriminant analysis (LDA) dimension reduction marginal fisher analysis (MFA) normal MFA (NMFA) orthogonal MFA (OMFA).
下载PDF
Nearest-neighbor classifier motivated marginal discriminant projections for face recognition 被引量:4
2
作者 Pu HUANG Zhenmin TANG +1 位作者 Caikou CHEN Xintian CHENG 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第4期419-428,共10页
Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intri... Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intrinsic and penalty graphs. In this paper, we propose a novel method called nearest-neighbor (NN) classifier motivated marginal discriminant projections (NN-MDP). Motivated by the NN classifier, NN-MDP seeks a few projection vectors to prevent data samples from being wrongly categorized. Like MFA, NN-MDP can characterize the compactness and separability of samples simultaneously. Moreover, in contrast to MFA, NN-MDP can actively construct the intrinsic graph and penalty graph without unknown parameters. Experimental results on the 0RL, Yale, and FERET face databases show that NN-MDP not only avoids the intractability, and high expense of neighborhood parameter selection, but is also more applicable to face recognition with NN classifier than other methods. 展开更多
关键词 dimensionality reduction (DR) face recogni-tion marginal fisher analysis (MFA) locality preservingprojections (LPP) graph construction margin-based nearest-neighbor (NN) classifier
原文传递
General moving objects recognition method based on graph embedding dimension reduction algorithm 被引量:1
3
作者 Yi ZHANG Jie YANG Kun LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期976-984,共9页
Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents... Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents a general moving objects recognition method using global features of targets. Targets are extracted with an adaptive Gaussian mixture model and their silhouette images are captured and unified. A new objects silhouette database is built to provide abundant samples to train the subspace feature. This database is more convincing than the previous ones. A more effective dimension reduction method based on graph embedding is used to obtain the projection eigenvector. In our experiments, we show the effective performance of our method in addressing the moving objects recognition problem and its superiority compared with the previous methods. 展开更多
关键词 Moving objects recognition Adaptive Gaussian mixture model Principal component analysis Linear discriminant analysis marginal fisher analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部