In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done t...In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.展开更多
To study population dynamics of marine ciliates in different artificial seawaters (ASW), the population growth dynamics of a common marine ciliate Euplotes vannus were investigated using beef extract media and rice ...To study population dynamics of marine ciliates in different artificial seawaters (ASW), the population growth dynamics of a common marine ciliate Euplotes vannus were investigated using beef extract media and rice media for five types of ASW and natural seawater (NSW). The results show that: (1) the population growth rate was in the order of NSW〉Flack ASW〉Nakamula ASW〉Schmadz ASW〉Oshima ASW〉Subow ASW and was considerably higher in rice media than in beef extract media (apart from Subow ASW); (2) the maximum density of E. vannus in stationary phase in each treatment was ranked as Hack ASW〉Nakamula ASW〉Schmadz ASW〉NSW〉Oshima ASW〉Subow ASW, and was again higher in rice media than in beef extract media (except for Subow ASW); (3) the exponential and stationary phases were longer in rice media than in beef extract media; (4) strains of E. vannus that had been domesticated for 〉1 year in ASW grew significantly slower, with lower maximum density and longer stationary phase than those isolated and maintained in NSW. It was demonstrated that: (1) E. vannus may grow well in Flack, Nakamula and Schmads ASW compared with NSW (mainly in terms of growth rate); and (2) Oshima ASW is the preferred choice for stock cultures of E. vannus, but the ASWs Flack, Nakamula and Schmadz are preferred for mass culture. These findings suggest that these three ASWs are effective for the cultivation of marine protozoa for experimental studies on ecology, toxicology and molecular biology.展开更多
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are establishe...Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.展开更多
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
In this paper, a new control system is proposed for dynamic positioning(DP) of marine vessels with unknown dynamics and subject to external disturbances. The control system is composed of a substructure for wave filte...In this paper, a new control system is proposed for dynamic positioning(DP) of marine vessels with unknown dynamics and subject to external disturbances. The control system is composed of a substructure for wave filtering and state estimation together with a nonlinear PD-type controller. For wave filtering and state estimation, a cascade combination of a modified notch filter and an estimation stage is considered. In estimation stage, a modified extended-state observer(ESO) is proposed to estimate vessel velocities and unknown dynamics. The main advantage of the proposed method is its robustness to model uncertainties and external disturbances and it does not require prior knowledge of vessel model parameters. Besides, the stability of the cascade structure is analyzed and input to state stability(ISS) is guaranteed. Later on, a nonlinear PD-type controller with feedforward of filtered estimated dynamics is utilized. Detailed stability analyses are presented for the closed-loop DP control system and global uniform ultimate boundedness is proved using large scale systems method. Simulations are conducted to evaluate the performance of the proposed method for wave filtering and state estimation and comparisons are made with two conventional methods in terms of estimation accuracy and the presence of uncertainties. Besides, comparisons are made in closed-loop control system to demonstrate the performance of the proposed method compared with conventional methods. The proposed control system results in better performance in the presence of uncertainties,external disturbance and even in transients when the vessel is subjected to sudden changes in environmental disturbances.展开更多
The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the infl...The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω1+ω2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.展开更多
Longitudinal vibration,torsional vibration and their coupled vibration are the main vibration modes of the crankshaft-sliding bearing system.However,these vibrations of the propeller-crankshaft-sliding bearing system ...Longitudinal vibration,torsional vibration and their coupled vibration are the main vibration modes of the crankshaft-sliding bearing system.However,these vibrations of the propeller-crankshaft-sliding bearing system generated by the fluid exciting force on the propeller are much more complex.Currently,the torsional and longitudinal vibrations have been studied separately while the research on their coupled vibration is few,and the influence of the propeller structure to dynamic characteristics of a crankshaft has not been studied yet.In order to describe the dynamic properties of a crankshaft accurately,a nonlinear dynamic model is proposed taking the effect of torsional-longitudinal coupling and the variable inertia of propeller,connecting rod and piston into account.Numerical simulation cases are carried out to calculate the response data of the system in time and frequency domains under the working speed and over-speed,respectively.Results of vibration analysis of the propeller and crankshaft system coupled in torsional and longitudinal direction indicate that the system dynamic behaviors are relatively complicated especially in the components of the frequency response.For example,the 4 times of an exciting frequency acting on the propeller by fluid appears at 130 r/min,while not yield at 105 r/min.While the possible abnormal vibration at over-speed just needs to be vigilant.So when designing the propeller shafting used in marine diesel engines,strength calculation and vibration analysis based only on linear model may cause great errors and the proposed research provides some references to design diesel engine propeller shafting used in large marines.展开更多
This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the ...This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.展开更多
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many...Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.展开更多
Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed accordin...Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed according to the moment equilibriums of the segments. Linearization iteration scheme is employed to obtain the numerical solution for the governing equations. For the cable being laid, the payout rate is calculated from the velocities of all segments. The numerical results are shown of the dynamic motion and tension of marine cables being laid during velocity change of the mother vessels.展开更多
Marine dynamic disasters,including storm surges,huge waves,and sea ice,are the most harmful natural disasters aff ecting coastal countries in the world.Under the infl uence of global climate change,the mechanisms,freq...Marine dynamic disasters,including storm surges,huge waves,and sea ice,are the most harmful natural disasters aff ecting coastal countries in the world.Under the infl uence of global climate change,the mechanisms,frequencies,and damage severity of marine dynamic disasters are exhibiting new characteristics.The enormity,unpredictability,and chain eff ects of these disasters have become increasingly prominent,and the losses endured by coastal countries around the world have been increasing year by year.Therefore,the prediction of,risk assessment for,and emergency response to marine dynamic disasters are important issues for disaster prevention and mitigation worldwide.展开更多
Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM ski...Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.展开更多
The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an ...The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing;its corresponding turning can be realized in real time onboard.展开更多
Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation,optimized operational efficiency,and the advancement of marine exploration.Addressing this,this...Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation,optimized operational efficiency,and the advancement of marine exploration.Addressing this,this paper proposes an instrumental variable-based least squares(IVLS)algorithm.Firstly,aiming to balance complexity with accuracy,a decoupled diving model is constructed,incorporating nonlinear actuator characteristics,inertia coefficients,and damping coefficients.Secondly,a discrete parameter identification matrix is designed based on this dedicated model,and then a IVLS algorithm is innovatively derived to reject measurement noise.Furthermore,the stability of the proposed algorithm is validated from a probabilistic point of view,providing a solid theoretical foundation.Finally,performance evaluation is conducted using four depth control datasets obtained from a piston-driven profiling float in Qiandao Lake,with desired depths of 30 m,40 m,50 m,and 60 m.Based on the diving dynamics identification results,the IVLS algorithm consistently shows superior performance when compared to recursive weighted least squares algorithm and least squares support vector machine algorithm across all depths,as evidenced by lower average absolute error(AVGAE),root mean square error(RMSE),and maximum absolute error values and higher determination coefficient(R2).Specifically,for desired depth of 60 m,the IVLS algorithm achieved an AVGAE of 0.553 m and RMSE of 0.655 m,significantly outperforming LSSVM with AVGAE and RMSE values of 8.782 m and 11.117 m,respectively.Moreover,the IVLS algorithm demonstrates a remarkable generalization capability with R2 values consistently above 0.95,indicating its robustness in handling varied diving dynamics.展开更多
Based on the simulation of a marine ecosystem dynamical model in the Bohai Sea, the Yellow Sea and the East China Sea, chlorophyll data are assimilated to study the spatially varying control parameters (CPs) by usin...Based on the simulation of a marine ecosystem dynamical model in the Bohai Sea, the Yellow Sea and the East China Sea, chlorophyll data are assimilated to study the spatially varying control parameters (CPs) by using the adjoint method. In this study, the CPs at some grid points are selected as the independent CPs, while the CPs at other grid points can be obtained through linear interpolation with the independent CPs. The independent CPs are uniformly selected from each 30′ × 30′area, and we confirm that the optimal influence radius is 1.2° by a twin experiment. In the following experiments, when only the maximum growth rate of phytoplankton (Vm) is estimated by two given types of spatially varying CPs, the mean relative errors of Vm are 1.22% and 0.94% while the decrease rates of the mean error of chlorophyll in the surface are 94.6% and 95.8%, respectively. When the other four CPs are estimated respectively, the results are also satisfactory, which indicates that the adjoint method has a strong ability of optimizing the prescribed CP with spatial variations. However, when all these five most important CPs are estimated simultaneously, the collocation of the changing trend of each parameter influences the estimation results remarkably. Only when the collocation of the changing trend of each parameter is consistent with the ecological mechanisms which influence the growth of the phytoplankton in marine ecosystem, could the five most important CPs be estimated more accurately.展开更多
A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river ...A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.展开更多
A project entitled‘Development of a Global High-resolution Marine Dynamic Environmental Forecasting System’has been funded by‘The Program on Marine Environmental Safety Guarantee’of The National Key Research and D...A project entitled‘Development of a Global High-resolution Marine Dynamic Environmental Forecasting System’has been funded by‘The Program on Marine Environmental Safety Guarantee’of The National Key Research and Development Program of China.This project will accomplish its objectives through basic theoretical research,model development and expansion,and system establishment and application,with a focus on four key issues separated into nine tasks.A series of research achievements have already been obtained,including datasets,observations,theories,and model results.展开更多
The issue of bycatch in the fisheries sector has been a major concern for the marine biologists over few decades in terms of conservation of marine eco-system and sustainability of the fisheries sector and marine biod...The issue of bycatch in the fisheries sector has been a major concern for the marine biologists over few decades in terms of conservation of marine eco-system and sustainability of the fisheries sector and marine biodiversity.As far as the concept of Bycatch is concerned,these are the unwanted species having less commercial importance,which in most of the cases disposed into the seas onboard or are caught during fishing.The article discusses the social,economic,cultural,and environmental impacts in addressing the issue of bycatch.The concern regarding bycatch is relatively new in the horizon in Indian perspective though it is often considered a major issue faced by developed nations since long.The problem of bycatch poses a serious threat to livelihoods and food security as it acts as a precursor to depletion of the food sources for local consumption with adverse social,economic,cultural,and environmental impacts.The adverse effects of by-catch can be mitigated through commercialisation of bycatch and making profits from the sale of bycatch,opening up of new markets for bycatch species or products,uses of bycatch as fishmeal and application of bycatch reduction devices(BRDs).Reorientation of the present monitoring system to collect fisheries data,strengthening technical know-how,bringing effective policy intervention,efficient co-management,and sincere and honest efforts in reducing bycatch and discards may provide a considerable impact towards sustainability of marine eco-system.展开更多
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure a...Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.展开更多
Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the int...Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the internal flowing fluid and the external marine environmental condition is derived. The effect of the internal flowing fluid on the response of VIV of the riser is studied by means of the Finite Element Method. The results show that the effect of the internal fluid velocity on the VIV of the riser is strong when the natural frequency of the riser is close to the vortex shedding frequency. In addition, the increase of the top tension can decrease the sensitivity of the riser to the internal fluid velocity.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51009092)the Doctoral Foundation of Education Ministry of China (Grant No. 20090073120013)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.
基金Supported by the National Natural Science foundation of China (Nos.41076089,40976075)a Post-Doctoral Fellowship by Inha University awarded to XU Henglong+1 种基金a Grant from the Center of Excellence in Biodiversity Research,King Saud Universitythe 111 Project of China (No.B08049)
文摘To study population dynamics of marine ciliates in different artificial seawaters (ASW), the population growth dynamics of a common marine ciliate Euplotes vannus were investigated using beef extract media and rice media for five types of ASW and natural seawater (NSW). The results show that: (1) the population growth rate was in the order of NSW〉Flack ASW〉Nakamula ASW〉Schmadz ASW〉Oshima ASW〉Subow ASW and was considerably higher in rice media than in beef extract media (apart from Subow ASW); (2) the maximum density of E. vannus in stationary phase in each treatment was ranked as Hack ASW〉Nakamula ASW〉Schmadz ASW〉NSW〉Oshima ASW〉Subow ASW, and was again higher in rice media than in beef extract media (except for Subow ASW); (3) the exponential and stationary phases were longer in rice media than in beef extract media; (4) strains of E. vannus that had been domesticated for 〉1 year in ASW grew significantly slower, with lower maximum density and longer stationary phase than those isolated and maintained in NSW. It was demonstrated that: (1) E. vannus may grow well in Flack, Nakamula and Schmads ASW compared with NSW (mainly in terms of growth rate); and (2) Oshima ASW is the preferred choice for stock cultures of E. vannus, but the ASWs Flack, Nakamula and Schmadz are preferred for mass culture. These findings suggest that these three ASWs are effective for the cultivation of marine protozoa for experimental studies on ecology, toxicology and molecular biology.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428703)Oceanic Science Fund for Young Scholar of SOA (Nos. 2010225, 2010118)+1 种基金Public Science and Technology Research Funds Projects of Ocean of China (Nos. 201005008, 201005009)Open Fund of MOIDAT (No. 201011)
文摘Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
文摘In this paper, a new control system is proposed for dynamic positioning(DP) of marine vessels with unknown dynamics and subject to external disturbances. The control system is composed of a substructure for wave filtering and state estimation together with a nonlinear PD-type controller. For wave filtering and state estimation, a cascade combination of a modified notch filter and an estimation stage is considered. In estimation stage, a modified extended-state observer(ESO) is proposed to estimate vessel velocities and unknown dynamics. The main advantage of the proposed method is its robustness to model uncertainties and external disturbances and it does not require prior knowledge of vessel model parameters. Besides, the stability of the cascade structure is analyzed and input to state stability(ISS) is guaranteed. Later on, a nonlinear PD-type controller with feedforward of filtered estimated dynamics is utilized. Detailed stability analyses are presented for the closed-loop DP control system and global uniform ultimate boundedness is proved using large scale systems method. Simulations are conducted to evaluate the performance of the proposed method for wave filtering and state estimation and comparisons are made with two conventional methods in terms of estimation accuracy and the presence of uncertainties. Besides, comparisons are made in closed-loop control system to demonstrate the performance of the proposed method compared with conventional methods. The proposed control system results in better performance in the presence of uncertainties,external disturbance and even in transients when the vessel is subjected to sudden changes in environmental disturbances.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679167 and 51979193)
文摘The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω1+ω2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.
基金Supported by Shanghai Municipal Commission of Economy and Informatization of China(Grant Nos.201001007,2013000016)
文摘Longitudinal vibration,torsional vibration and their coupled vibration are the main vibration modes of the crankshaft-sliding bearing system.However,these vibrations of the propeller-crankshaft-sliding bearing system generated by the fluid exciting force on the propeller are much more complex.Currently,the torsional and longitudinal vibrations have been studied separately while the research on their coupled vibration is few,and the influence of the propeller structure to dynamic characteristics of a crankshaft has not been studied yet.In order to describe the dynamic properties of a crankshaft accurately,a nonlinear dynamic model is proposed taking the effect of torsional-longitudinal coupling and the variable inertia of propeller,connecting rod and piston into account.Numerical simulation cases are carried out to calculate the response data of the system in time and frequency domains under the working speed and over-speed,respectively.Results of vibration analysis of the propeller and crankshaft system coupled in torsional and longitudinal direction indicate that the system dynamic behaviors are relatively complicated especially in the components of the frequency response.For example,the 4 times of an exciting frequency acting on the propeller by fluid appears at 130 r/min,while not yield at 105 r/min.While the possible abnormal vibration at over-speed just needs to be vigilant.So when designing the propeller shafting used in marine diesel engines,strength calculation and vibration analysis based only on linear model may cause great errors and the proposed research provides some references to design diesel engine propeller shafting used in large marines.
基金National Natural Science Foundation of China under Grant Nos.51978334 and 51978335。
文摘This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.
基金Supported by National Natural Science Foundation of China(Grant No.51175484)Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0500)+1 种基金Program of Introducing Talents of Discipline to Universities,China(Grant No.B14028)Fundamental Research Funds for the Central Universities,China(Grant No.841513053)
文摘Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.
基金supported by the National Natural Science Foundation of China(Grant Nos.51009092 and 51279107)Doctoral Foundation of Education Ministry of China(Grant No.20090073120013)Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed according to the moment equilibriums of the segments. Linearization iteration scheme is employed to obtain the numerical solution for the governing equations. For the cable being laid, the payout rate is calculated from the velocities of all segments. The numerical results are shown of the dynamic motion and tension of marine cables being laid during velocity change of the mother vessels.
基金the National Key Research and Development Program of China’s “Severe marine dynamic disasters: causing mechanism, risk assessment, response technology, and demonstration application” project (No. 2016YFC1402000) for financial support
文摘Marine dynamic disasters,including storm surges,huge waves,and sea ice,are the most harmful natural disasters aff ecting coastal countries in the world.Under the infl uence of global climate change,the mechanisms,frequencies,and damage severity of marine dynamic disasters are exhibiting new characteristics.The enormity,unpredictability,and chain eff ects of these disasters have become increasingly prominent,and the losses endured by coastal countries around the world have been increasing year by year.Therefore,the prediction of,risk assessment for,and emergency response to marine dynamic disasters are important issues for disaster prevention and mitigation worldwide.
基金Supported by the National Natural Science Foundation of China(Nos.41206111,41206112)
文摘Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.
基金Partially supported by Russian Foundation for Basic Research(Research project No.14-07-00083a)
文摘The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing;its corresponding turning can be realized in real time onboard.
基金supported in part by the National Natural Sci-ence Foundation of China under Grant 42376187in part by the National Key R&D Program of China under Grant 2023YFC2812800,in part by the Natural Science Foundation of Shanghai under Grant 22ZR1434600+2 种基金in part by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under Grant SL2022MS016in part by the Shanghai Jiao Tong University 2030 Initiative under Grant WH510244001in part by the Shanghai Underwater Robot En-gineering Technology Innovation Center under Grant 21DZ2221600.
文摘Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation,optimized operational efficiency,and the advancement of marine exploration.Addressing this,this paper proposes an instrumental variable-based least squares(IVLS)algorithm.Firstly,aiming to balance complexity with accuracy,a decoupled diving model is constructed,incorporating nonlinear actuator characteristics,inertia coefficients,and damping coefficients.Secondly,a discrete parameter identification matrix is designed based on this dedicated model,and then a IVLS algorithm is innovatively derived to reject measurement noise.Furthermore,the stability of the proposed algorithm is validated from a probabilistic point of view,providing a solid theoretical foundation.Finally,performance evaluation is conducted using four depth control datasets obtained from a piston-driven profiling float in Qiandao Lake,with desired depths of 30 m,40 m,50 m,and 60 m.Based on the diving dynamics identification results,the IVLS algorithm consistently shows superior performance when compared to recursive weighted least squares algorithm and least squares support vector machine algorithm across all depths,as evidenced by lower average absolute error(AVGAE),root mean square error(RMSE),and maximum absolute error values and higher determination coefficient(R2).Specifically,for desired depth of 60 m,the IVLS algorithm achieved an AVGAE of 0.553 m and RMSE of 0.655 m,significantly outperforming LSSVM with AVGAE and RMSE values of 8.782 m and 11.117 m,respectively.Moreover,the IVLS algorithm demonstrates a remarkable generalization capability with R2 values consistently above 0.95,indicating its robustness in handling varied diving dynamics.
基金The State Ministry of Science and Technology of China under contract No. 2007AA09Z118the National Natural Science Foundation of China under contract No. 41076006the Ministry of Education’s 111 Project under contract No. B07036
文摘Based on the simulation of a marine ecosystem dynamical model in the Bohai Sea, the Yellow Sea and the East China Sea, chlorophyll data are assimilated to study the spatially varying control parameters (CPs) by using the adjoint method. In this study, the CPs at some grid points are selected as the independent CPs, while the CPs at other grid points can be obtained through linear interpolation with the independent CPs. The independent CPs are uniformly selected from each 30′ × 30′area, and we confirm that the optimal influence radius is 1.2° by a twin experiment. In the following experiments, when only the maximum growth rate of phytoplankton (Vm) is estimated by two given types of spatially varying CPs, the mean relative errors of Vm are 1.22% and 0.94% while the decrease rates of the mean error of chlorophyll in the surface are 94.6% and 95.8%, respectively. When the other four CPs are estimated respectively, the results are also satisfactory, which indicates that the adjoint method has a strong ability of optimizing the prescribed CP with spatial variations. However, when all these five most important CPs are estimated simultaneously, the collocation of the changing trend of each parameter influences the estimation results remarkably. Only when the collocation of the changing trend of each parameter is consistent with the ecological mechanisms which influence the growth of the phytoplankton in marine ecosystem, could the five most important CPs be estimated more accurately.
基金supported by Key Subject Fund of Shanghai Education Committee (No. J50702)Open Foundation of the Key Subject in Environmental Engineering of Shanghai Ocean University(No. B820609000404)Initial Foundation for Ph. D. of ShanghaiOcean University (No. B820607000402)
文摘A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.
基金funded by "The Program on Marine Environmental Safety Guarantee" of "The National Key Research and Development Program of China"[grant number2016YFC1401409]
文摘A project entitled‘Development of a Global High-resolution Marine Dynamic Environmental Forecasting System’has been funded by‘The Program on Marine Environmental Safety Guarantee’of The National Key Research and Development Program of China.This project will accomplish its objectives through basic theoretical research,model development and expansion,and system establishment and application,with a focus on four key issues separated into nine tasks.A series of research achievements have already been obtained,including datasets,observations,theories,and model results.
文摘The issue of bycatch in the fisheries sector has been a major concern for the marine biologists over few decades in terms of conservation of marine eco-system and sustainability of the fisheries sector and marine biodiversity.As far as the concept of Bycatch is concerned,these are the unwanted species having less commercial importance,which in most of the cases disposed into the seas onboard or are caught during fishing.The article discusses the social,economic,cultural,and environmental impacts in addressing the issue of bycatch.The concern regarding bycatch is relatively new in the horizon in Indian perspective though it is often considered a major issue faced by developed nations since long.The problem of bycatch poses a serious threat to livelihoods and food security as it acts as a precursor to depletion of the food sources for local consumption with adverse social,economic,cultural,and environmental impacts.The adverse effects of by-catch can be mitigated through commercialisation of bycatch and making profits from the sale of bycatch,opening up of new markets for bycatch species or products,uses of bycatch as fishmeal and application of bycatch reduction devices(BRDs).Reorientation of the present monitoring system to collect fisheries data,strengthening technical know-how,bringing effective policy intervention,efficient co-management,and sincere and honest efforts in reducing bycatch and discards may provide a considerable impact towards sustainability of marine eco-system.
文摘Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.
文摘Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the internal flowing fluid and the external marine environmental condition is derived. The effect of the internal flowing fluid on the response of VIV of the riser is studied by means of the Finite Element Method. The results show that the effect of the internal fluid velocity on the VIV of the riser is strong when the natural frequency of the riser is close to the vortex shedding frequency. In addition, the increase of the top tension can decrease the sensitivity of the riser to the internal fluid velocity.