There are many flaws in welding images such as noise, low contrast, and blurred edges, which affect feature extraction from welding defect regions and impede classification and recognition of welding defects. To deal ...There are many flaws in welding images such as noise, low contrast, and blurred edges, which affect feature extraction from welding defect regions and impede classification and recognition of welding defects. To deal with the complexity of welding defect images, this paper proposes an effective method for extracting the features of welding defect regions. Firstly, image preprocessing, image segmentation and image background removal are carried out to a welding image in order to extract welding defect region; and then an 8-connected-component labeling method is used to mark defect regions. Finally, it extracts geometric characteristic parameters including perimeter, area, circularity and others. The experimental result shows that the method proposed in the paper can accurately extract the features of welding defect regions. It has good adaptability and practicability.展开更多
基金supported by Special Program for Trend Setting Research of Jiangsu Province(Grant No.BY2015065-07)Research Foundation of Jiangsu Key Laboratory of Recycling and Reusing Technology for Mechanical and Electronic Products(Grant No.RRME-KF1605)
文摘There are many flaws in welding images such as noise, low contrast, and blurred edges, which affect feature extraction from welding defect regions and impede classification and recognition of welding defects. To deal with the complexity of welding defect images, this paper proposes an effective method for extracting the features of welding defect regions. Firstly, image preprocessing, image segmentation and image background removal are carried out to a welding image in order to extract welding defect region; and then an 8-connected-component labeling method is used to mark defect regions. Finally, it extracts geometric characteristic parameters including perimeter, area, circularity and others. The experimental result shows that the method proposed in the paper can accurately extract the features of welding defect regions. It has good adaptability and practicability.