The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti5...The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging.展开更多
Microstructures of a CuZnAlMnNi shape memory alloy in the as-quenched andlong-term aged conditions were investigated by transmission electron microscopy. Aged for one yearin martensite phase, an equilibrium α-phase w...Microstructures of a CuZnAlMnNi shape memory alloy in the as-quenched andlong-term aged conditions were investigated by transmission electron microscopy. Aged for one yearin martensite phase, an equilibrium α-phase with fcc structure was observed in the M18R martensitematrix, accompanied by the appearance of a novel diffraction pattern. By analysis, it was suggestedthat the novel pattern results from the α-phase and the martensite matrix remaining in seven fineplates which produce intense secondary diffraction effect when the diffraction beams enter from onephase into another.展开更多
基金This work was supported by a Grant-in-Aid fOrEncouragement of Young Scientists (W.C.) (l998-1999) from the Ministry of Educat
文摘The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging.
基金This project is financially supported by the Natural Science Foundation of Shandong Province ( Y2001F06) and the Fund for Outstanding Young Researcher of Shandong Province
文摘Microstructures of a CuZnAlMnNi shape memory alloy in the as-quenched andlong-term aged conditions were investigated by transmission electron microscopy. Aged for one yearin martensite phase, an equilibrium α-phase with fcc structure was observed in the M18R martensitematrix, accompanied by the appearance of a novel diffraction pattern. By analysis, it was suggestedthat the novel pattern results from the α-phase and the martensite matrix remaining in seven fineplates which produce intense secondary diffraction effect when the diffraction beams enter from onephase into another.