This paper mainly studies the influence of deformation amount and cooling rate,which existed in X100 pipeline steel rolled at 2300mm rolling mill in BX STEEL,on morphology,size relations and distribution of M/A island...This paper mainly studies the influence of deformation amount and cooling rate,which existed in X100 pipeline steel rolled at 2300mm rolling mill in BX STEEL,on morphology,size relations and distribution of M/A islands of steel plate structure.Experimental results show that structures of M/A islands are homogenized and refined under the conditions of appropriately increasing the deformation amount in non-recrystallization region on basis of rational deformation amount in recrystallization region and cooling rate after deformation,respectively.Finally,according to the actual situation of 2300mm hot rolling mill,this paper gives rational deformation amount and cooling rate used to obtain ideal structure of M/A islands.展开更多
An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interf...An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.展开更多
The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase t...The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.展开更多
The atomic level structures of fcc/bcc interfaces in an Fe-9Ni alloy have been examined by means of HREM. It has been found that the orientation of γ prime /α interface had great effects on its atomic structure. T...The atomic level structures of fcc/bcc interfaces in an Fe-9Ni alloy have been examined by means of HREM. It has been found that the orientation of γ prime /α interface had great effects on its atomic structure. These interfaces with different orientations may be composed of only structural ledges, structural ledges with misfit dislocations, superledges with misfit dislocations or only misfit dislocations. A structural model of growth ledge was suggested. The terrace of growth ledge was composed of structural ledges or misfit dislocations. The atomic structure of the riser of growth ledge was the same as that of the side facet of γ prime lath, which is composed of superledges with misfit dislocations.展开更多
The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness hav...The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness have been investigated.The thermal and mechanical stabilities of the retained austenite were analyzed.Furthermore the effects of retained austenite on the mechanical properties of the steel were studied.The results show that the morphology and amount of retained austenite vary with silicon content in the steel.Retained austenite with high stability was responsible for the simultaneous increase in strength and toughness of the steel.The duplex microstructure of martensite and abnormal lower bainite of the steel with the maximum silicon content exhibits a relatively good strength-toughness combination.展开更多
The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The th...The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The thin foils of the hardening layer worn down have been observed by electron microscopy.It was revealed that two types of martensite are strain-induced by slid- ing wearing under load of 1.72 MPa on the hardening layer of residual austenite.The strain induced martensite is profitable to improve the sliding wearing resistance.展开更多
The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of...The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.展开更多
The present work analyses the total free energy of the material during the martensitic transformation. A general expression for the martensite fraction as a function of temperature is derived, assuming that the nonche...The present work analyses the total free energy of the material during the martensitic transformation. A general expression for the martensite fraction as a function of temperature is derived, assuming that the nonchemical free energyis proportional to the volume of martensite. This expression indicates that the temperature-dependent martensitefraction can be predicted once the characteristic transformation temperatures and the relation between the chemicalfree energy and temperature of the martensite and austenite are known. An advantage of this development is thatthe proposed equation is valid for all types of relations between the chemical free energy and temperature. Thissimulation is successfully applied to the martensitic transformation upon further cooling of retained austenite in alow-alloyed TRIP steel, in which the relation between chemical free energy and temperature is quadratic and thefraction is determined from a thermo-magnetic measurement.展开更多
With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deform...With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
The M_s temperature and the yield strength of austenite at M_s temperature have been meas- ured for five Fe-Mn-C alloys.The experimental results show that there is a linear relation- ship between them.The effect of th...The M_s temperature and the yield strength of austenite at M_s temperature have been meas- ured for five Fe-Mn-C alloys.The experimental results show that there is a linear relation- ship between them.The effect of the solution strengthening of austenite on martensite morphology is also studied.It is pointed out that there is a characteristic temperature T_c in austenite strengthening.Martensite morphology is mainly of dislocated laths when M_s>T_c, and is mainly of twinned plates when M_s<T_c.A theoretical analysis is given which is in good agreement with experimental results.展开更多
The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-mar...The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.展开更多
To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and me...To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870A degrees C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850A degrees C, where grains with a diameter ae<currency> 500 nm accounted for 30% and those with a diameter > 0.5 mu m accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.展开更多
To investigate the transformation behavior of TRIP steel retained austenite under cyclic load, cyclic V-bending deformation of low carbon Si-Mn TRIP600 was studied by experiment and finite element in this paper. The r...To investigate the transformation behavior of TRIP steel retained austenite under cyclic load, cyclic V-bending deformation of low carbon Si-Mn TRIP600 was studied by experiment and finite element in this paper. The results showed that, under cyclic V-bending deformation, retained austenite in TRIP steel transformed into martensite gradually with the increasing of bending times, and for the symmetrical characteristic, upper surface and lower surface presented the same transformation tendency. From the first to the fourth V-bending deformatiort, retained austenite volume fraction decreased nearly linearly and then attained saturation step by step. Compressive stress state was helpful for martensite transformation than tension stress state with V-bending deformation, and strain magnitude was the determining factor for retaining anstenite martensitic transformation. With the increasing of bending times effective stress increased and the relationship between maximum effective stress and bending times was nearly linear. Effective stress and effective strain distribution were non-uniform, the maximum effective stress and effective strain were present in the center of the samples. The relationships between retained austenite and V-bending times, and retained austenite with effective strain were set up as Eqs.(1)-(5). The relationship was typical quadric function, decreased linearly for the initial deformation and attained saturation finally.展开更多
Deformation-induced microstructures of high-Mn austenite steel was investigated by metallography,X-ray diffraction and SEM.The ε-martensite and slip-bands are deformation-in- duced on the{111} planes,and appear as th...Deformation-induced microstructures of high-Mn austenite steel was investigated by metallography,X-ray diffraction and SEM.The ε-martensite and slip-bands are deformation-in- duced on the{111} planes,and appear as thin straight laths with 60~80° alignment difference be- tween them.It was found that ε-martensite and slip bands are kinked at fcc twin boundaries with the kinked angle 35~40°.The bands of equilateral triangle in the microstructure of tensile deformation are presented.展开更多
The morphology of the retained austenite in the carburized case of 20CrNiMo steel and its transformation during fatigue crack propagation through the case were investigated by using X-ray and TEM analysis.In the carbu...The morphology of the retained austenite in the carburized case of 20CrNiMo steel and its transformation during fatigue crack propagation through the case were investigated by using X-ray and TEM analysis.In the carburized case both film and block shaped retained austenite were found.Due to the crystallographic orientation relationship at the interface,the fatigue crack is inclined to pass through the block shaped retained austenite and thereby stim- ulates its strain-induced martensitie transformation.During the process of the fatigue frac- ture,most of the retained austenite structures on the crack path are transformed into the martensite,and the untranaformed parts on the fracture surface remain less than 6%.The transformation of the retained austenite,which is restrieted mainly within the plastic zone,oc- curs only during the proeess of fracture,and is independent of the magnitudes of the external stress,stress ratio and cyclic number.The volume expansion accompanying the transforma- tion creates an additional residual displacement of about 0.44μm on fracture surfaces,which is equivalent to the magnitude of the plasticity-induced residual displacement.The phase transformation induced fatigue crack closure is believed to be an important factor affecting the fatigue crack behaviors in the high carbon laver of the carburized case.展开更多
Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the...Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the as- received steels bearing low nickel content was around 300 MPa and their elongation ratios varied from 55.2% to 61.7%. Erichsen numbers of these samples differed from 13.82 to 14.57 mm. Although its Cu content was lower than that of other samples, steel D2 exhibited better plasticity and formability, which was attributed to ~/--,c~' martensitic phase transformation. EBSD, XRD, and magnetism tests showed that increases in deformation ratio gradually increased the α' martensite phase of a sample ,thereby contributing to its strain and inducing the optimal transformation-induced plasticity effect. An Meeo/5o temperature of around 20 ℃, which is close to the deformation temperature,provided the austenite with adequate stability and gradually transformed it into martensite, thereby endowing lean ASS with better formability.展开更多
The deformation accompanied by austenite to martensite trans-formation was first studied in Fe-Ni alloys,high-Mn steels,and austenitic stainless steels with a full austenite microstructure.The plasticity of these stee...The deformation accompanied by austenite to martensite trans-formation was first studied in Fe-Ni alloys,high-Mn steels,and austenitic stainless steels with a full austenite microstructure.The plasticity of these steels can be improved by the trans-formation during deformation and hence they were named as transformation-induced plasticity(TRIP)steels[1].Over the past few decades,a series of TRIP steels with multiphase microstructure for automotive applications were developed.These steels contain-ing a certain amount of austenite were called TRIP-assisted steels,such as low-alloy TRIP steels[2],carbide-free bainitic steels[3],δ-TRIP steels[4],quenching and partitioning steels[5],and medium-Mn steels[6].The mechanical property of TRIP steels is largely determined by the mechanical stability of austenite[7]which de-pends on the chemical composition[8],grain size[9],orientation[10],and morphology[11]of austenite grains,as well as the nature of neighboring phases[12].In most cases of TRIP-assisted steels,larger austenite grains transform to martensite earlier or faster than smaller austenite grains with the increase of macrostrain[13-18],indicating lower mechanical stability.However,larger austen-ite grains usually contain less C and Mn[13,17-19]and suffer more strain than smaller grains during deformation[20],it doesn’t mean that grain refinement increases the mechanical stability of austen-ite.展开更多
文摘This paper mainly studies the influence of deformation amount and cooling rate,which existed in X100 pipeline steel rolled at 2300mm rolling mill in BX STEEL,on morphology,size relations and distribution of M/A islands of steel plate structure.Experimental results show that structures of M/A islands are homogenized and refined under the conditions of appropriately increasing the deformation amount in non-recrystallization region on basis of rational deformation amount in recrystallization region and cooling rate after deformation,respectively.Finally,according to the actual situation of 2300mm hot rolling mill,this paper gives rational deformation amount and cooling rate used to obtain ideal structure of M/A islands.
文摘An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.
基金the National Natural Science Foundation of China(No.50401003)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)of China(No.200335)+1 种基金the Natural Science Foundation of Tianjin City(No.033608811)the Fok Ying Tong Education Foundation,and the Program for New Century Excellent Talents in University for grant and financial support.
文摘The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.
文摘The atomic level structures of fcc/bcc interfaces in an Fe-9Ni alloy have been examined by means of HREM. It has been found that the orientation of γ prime /α interface had great effects on its atomic structure. These interfaces with different orientations may be composed of only structural ledges, structural ledges with misfit dislocations, superledges with misfit dislocations or only misfit dislocations. A structural model of growth ledge was suggested. The terrace of growth ledge was composed of structural ledges or misfit dislocations. The atomic structure of the riser of growth ledge was the same as that of the side facet of γ prime lath, which is composed of superledges with misfit dislocations.
文摘The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness have been investigated.The thermal and mechanical stabilities of the retained austenite were analyzed.Furthermore the effects of retained austenite on the mechanical properties of the steel were studied.The results show that the morphology and amount of retained austenite vary with silicon content in the steel.Retained austenite with high stability was responsible for the simultaneous increase in strength and toughness of the steel.The duplex microstructure of martensite and abnormal lower bainite of the steel with the maximum silicon content exhibits a relatively good strength-toughness combination.
文摘The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The thin foils of the hardening layer worn down have been observed by electron microscopy.It was revealed that two types of martensite are strain-induced by slid- ing wearing under load of 1.72 MPa on the hardening layer of residual austenite.The strain induced martensite is profitable to improve the sliding wearing resistance.
基金Item Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.
文摘The present work analyses the total free energy of the material during the martensitic transformation. A general expression for the martensite fraction as a function of temperature is derived, assuming that the nonchemical free energyis proportional to the volume of martensite. This expression indicates that the temperature-dependent martensitefraction can be predicted once the characteristic transformation temperatures and the relation between the chemicalfree energy and temperature of the martensite and austenite are known. An advantage of this development is thatthe proposed equation is valid for all types of relations between the chemical free energy and temperature. Thissimulation is successfully applied to the martensitic transformation upon further cooling of retained austenite in alow-alloyed TRIP steel, in which the relation between chemical free energy and temperature is quadratic and thefraction is determined from a thermo-magnetic measurement.
文摘With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
文摘The M_s temperature and the yield strength of austenite at M_s temperature have been meas- ured for five Fe-Mn-C alloys.The experimental results show that there is a linear relation- ship between them.The effect of the solution strengthening of austenite on martensite morphology is also studied.It is pointed out that there is a characteristic temperature T_c in austenite strengthening.Martensite morphology is mainly of dislocated laths when M_s>T_c, and is mainly of twinned plates when M_s<T_c.A theoretical analysis is given which is in good agreement with experimental results.
文摘The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.
基金supported by the National Natural Science Foundation of China(Grant No.51474031)
文摘To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870A degrees C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850A degrees C, where grains with a diameter ae<currency> 500 nm accounted for 30% and those with a diameter > 0.5 mu m accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.
基金Funded by National Natural Science Foundation of China(No.51075034)
文摘To investigate the transformation behavior of TRIP steel retained austenite under cyclic load, cyclic V-bending deformation of low carbon Si-Mn TRIP600 was studied by experiment and finite element in this paper. The results showed that, under cyclic V-bending deformation, retained austenite in TRIP steel transformed into martensite gradually with the increasing of bending times, and for the symmetrical characteristic, upper surface and lower surface presented the same transformation tendency. From the first to the fourth V-bending deformatiort, retained austenite volume fraction decreased nearly linearly and then attained saturation step by step. Compressive stress state was helpful for martensite transformation than tension stress state with V-bending deformation, and strain magnitude was the determining factor for retaining anstenite martensitic transformation. With the increasing of bending times effective stress increased and the relationship between maximum effective stress and bending times was nearly linear. Effective stress and effective strain distribution were non-uniform, the maximum effective stress and effective strain were present in the center of the samples. The relationships between retained austenite and V-bending times, and retained austenite with effective strain were set up as Eqs.(1)-(5). The relationship was typical quadric function, decreased linearly for the initial deformation and attained saturation finally.
文摘Deformation-induced microstructures of high-Mn austenite steel was investigated by metallography,X-ray diffraction and SEM.The ε-martensite and slip-bands are deformation-in- duced on the{111} planes,and appear as thin straight laths with 60~80° alignment difference be- tween them.It was found that ε-martensite and slip bands are kinked at fcc twin boundaries with the kinked angle 35~40°.The bands of equilateral triangle in the microstructure of tensile deformation are presented.
文摘The morphology of the retained austenite in the carburized case of 20CrNiMo steel and its transformation during fatigue crack propagation through the case were investigated by using X-ray and TEM analysis.In the carburized case both film and block shaped retained austenite were found.Due to the crystallographic orientation relationship at the interface,the fatigue crack is inclined to pass through the block shaped retained austenite and thereby stim- ulates its strain-induced martensitie transformation.During the process of the fatigue frac- ture,most of the retained austenite structures on the crack path are transformed into the martensite,and the untranaformed parts on the fracture surface remain less than 6%.The transformation of the retained austenite,which is restrieted mainly within the plastic zone,oc- curs only during the proeess of fracture,and is independent of the magnitudes of the external stress,stress ratio and cyclic number.The volume expansion accompanying the transforma- tion creates an additional residual displacement of about 0.44μm on fracture surfaces,which is equivalent to the magnitude of the plasticity-induced residual displacement.The phase transformation induced fatigue crack closure is believed to be an important factor affecting the fatigue crack behaviors in the high carbon laver of the carburized case.
基金sponsored by Shanghai Rising-Star Program with No.17QB1400100
文摘Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the as- received steels bearing low nickel content was around 300 MPa and their elongation ratios varied from 55.2% to 61.7%. Erichsen numbers of these samples differed from 13.82 to 14.57 mm. Although its Cu content was lower than that of other samples, steel D2 exhibited better plasticity and formability, which was attributed to ~/--,c~' martensitic phase transformation. EBSD, XRD, and magnetism tests showed that increases in deformation ratio gradually increased the α' martensite phase of a sample ,thereby contributing to its strain and inducing the optimal transformation-induced plasticity effect. An Meeo/5o temperature of around 20 ℃, which is close to the deformation temperature,provided the austenite with adequate stability and gradually transformed it into martensite, thereby endowing lean ASS with better formability.
基金supported by the National Natural Science Foundation(No.52101128)the National Key R&D Program(No.2018YFE0306102)+1 种基金the Postdoctoral Science Foundation(No.2022M710021)the Northeastern University Postdoctoral Research Fund of China(No.20220202).
文摘The deformation accompanied by austenite to martensite trans-formation was first studied in Fe-Ni alloys,high-Mn steels,and austenitic stainless steels with a full austenite microstructure.The plasticity of these steels can be improved by the trans-formation during deformation and hence they were named as transformation-induced plasticity(TRIP)steels[1].Over the past few decades,a series of TRIP steels with multiphase microstructure for automotive applications were developed.These steels contain-ing a certain amount of austenite were called TRIP-assisted steels,such as low-alloy TRIP steels[2],carbide-free bainitic steels[3],δ-TRIP steels[4],quenching and partitioning steels[5],and medium-Mn steels[6].The mechanical property of TRIP steels is largely determined by the mechanical stability of austenite[7]which de-pends on the chemical composition[8],grain size[9],orientation[10],and morphology[11]of austenite grains,as well as the nature of neighboring phases[12].In most cases of TRIP-assisted steels,larger austenite grains transform to martensite earlier or faster than smaller austenite grains with the increase of macrostrain[13-18],indicating lower mechanical stability.However,larger austen-ite grains usually contain less C and Mn[13,17-19]and suffer more strain than smaller grains during deformation[20],it doesn’t mean that grain refinement increases the mechanical stability of austen-ite.