The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason...The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.展开更多
This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicat...This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel.展开更多
The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness hav...The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness have been investigated.The thermal and mechanical stabilities of the retained austenite were analyzed.Furthermore the effects of retained austenite on the mechanical properties of the steel were studied.The results show that the morphology and amount of retained austenite vary with silicon content in the steel.Retained austenite with high stability was responsible for the simultaneous increase in strength and toughness of the steel.The duplex microstructure of martensite and abnormal lower bainite of the steel with the maximum silicon content exhibits a relatively good strength-toughness combination.展开更多
Fatigue crack propagation rate,da/dN,and threshold stress intensity range,ΔK_(th),of steel 20CrMnMo containing low carbon martensite or low carbon martensite/bainite(LCM/B) duplex structure,obtained by oil quenching ...Fatigue crack propagation rate,da/dN,and threshold stress intensity range,ΔK_(th),of steel 20CrMnMo containing low carbon martensite or low carbon martensite/bainite(LCM/B) duplex structure,obtained by oil quenching and austempered at 360℃,have been measured using specimens under four-point bending.Observation was also made of the crack path and fracture morphology with relation to microstructure.The formation of LCM/B duplex structure,which caused by 20% lower bainite after short-time isothermal treatment,may re- markably increase ΔK_(th)and considerably decrease da/dN.The effect of microstructure on da/dN and ΔK_(th)was discussed with the emphasis on the crack propagation path.展开更多
The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching afte...The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching after solution treatment between 960-1000 ℃. The antiphase boundary (APB)-like structure was observed clearly in the α" martensite plates. The APB-like contrasts exist along the (001) and (020) planes of α" martensite. This APB-like structure of α" martensite was identified as a kind of stacking fault with an APB-like morphology induced by martensitic transformation and not by order/disorder transition. During martensitic transformation, martensitic domains nucleate and grow, eventually encounter each other, resulting in the formation of the APBdike contrast.展开更多
The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolongi...The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.展开更多
By continuous quenching process, the effect of austenitizing temperature and time on the structure and hardness of bainiteductile cast iron was studied. It was found that (l) low austenitizing temperature would result...By continuous quenching process, the effect of austenitizing temperature and time on the structure and hardness of bainiteductile cast iron was studied. It was found that (l) low austenitizing temperature would result in scrap ferrite existing in matrix, whichreduces the macro-hardness of bainite ductile cast iron; (2) high austenitizing temperature would make carbide decomposed, which alsoinduces the macro-hardness of bainite cast iron, and (3) austenitizing time has little effect on the structure of bainite ductile cast iron, butas it increases, the macro-hardness ofbainite ductile cast iron and micro-hardness of bainite increases. To the ductile cast iron, as a result,the suitable austenitizing temperature and time are recommended as 880 and 120 min respectively.展开更多
Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence ...Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.展开更多
The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in a...The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.展开更多
The crystal structure and thermal stability of the martensite in Cu 24Al 3Mn (mole fraction, %) alloy were studied by X ray diffraction, electron diffraction, V - t curve measurement. The 18R martensite with fairly pe...The crystal structure and thermal stability of the martensite in Cu 24Al 3Mn (mole fraction, %) alloy were studied by X ray diffraction, electron diffraction, V - t curve measurement. The 18R martensite with fairly perfect long range order can be obtained by water quenching the alloy. The atoms distribution on the basal plane of the martensite is as follows: Ⅰ, 3/25 Mn+22/25 Cu; Ⅱ, 3/25 Al+22/25 Cu; Ⅲ, 18/25 Al+7/25 Cu, correspondingly, the parent phase may have Heusler structure. From the electron diffraction result, the crystal structure is determined to be of a modified 18R type but closely approaching orthorhombic 18R type, its lattice parameters are determined to be a = 0.447?4?nm, b = 0.522?9?nm, c = 3.815?nm and β =89.6° from the X ray diffraction results. The obtained alloy has a higher thermal stability than that of the conventional Cu Zn Al alloy.展开更多
The strain fatigue,impact fatigue and rotation beam fatigue behaviour of granular bainitic structure has been studied.The results show that the strain fatigue properties and the impact fatigue properties of granular b...The strain fatigue,impact fatigue and rotation beam fatigue behaviour of granular bainitic structure has been studied.The results show that the strain fatigue properties and the impact fatigue properties of granular bainite are superior to that of tempered martensite under the condition that the ultimate tensile strength is equal.The impact.fatigue life increases with in- creasing amount of granular bainite,because the M-A islands might retard the propagation of fatigue crack.The rotation beam fatigue properties of granular hainite are similar to that of tempered martensite.The relationship between.fatigue limit S_f,yield strength σ_y and frac- ture strength S_k may be expressed as S_f=4.651+0.1411(σ_y+S_k)展开更多
The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of...The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.展开更多
In the present paper the morphologies of sur- face structures and the anomalous contrast of β_1 phase accompanying with the formation of bainite plate in the Cu-Zn-Al shape memory alloy have been investigated in deta...In the present paper the morphologies of sur- face structures and the anomalous contrast of β_1 phase accompanying with the formation of bainite plate in the Cu-Zn-Al shape memory alloy have been investigated in detail by the transmission elec- tron microscopy and diffraction.The experimental results have proved that the extra diffraction and anomalous contrast results from the surface martensite formed on the β_1 phase.However,the crystal structure and morphology of the surface martensite are varied at different stage of bainite formation.The observation of interfacial disloca- tion structure of bainite/β_1 matrix reveals that there is a large strain in the bainite transformation of β CuZnAl alloy.Based on the experiment results the formation of surface martensite and bainitic transformation were discussed.展开更多
The morphology and substructure of mixed martensites in ferrous alloys have been examined by using optical and transmission electron microscope. The results indicated that the main formation se- quence of martensitic ...The morphology and substructure of mixed martensites in ferrous alloys have been examined by using optical and transmission electron microscope. The results indicated that the main formation se- quence of martensitic morphology was butterfly→ plate→lath,with decreasing forming temperatures when the plastic accommodation takes place in the parent phase,which is affected by the transforma- tion strain fiélds.It was shown that the martensite morphology is not only decided by the forming temperature alone,but also by the dislocation struc- ture in austenite before the transformation.展开更多
The transmission electron microscopy has been used to investigate the fine structure variation of 18R martensite under deformation in a polycrvstalline CuZnAl shape memory alloys.It has been found that the strain is g...The transmission electron microscopy has been used to investigate the fine structure variation of 18R martensite under deformation in a polycrvstalline CuZnAl shape memory alloys.It has been found that the strain is gabined by the reorientation of martensite variants in the ini- tial deformation stage.In addition to the result of optical microscopy studies,however,the reorientation is often incomplete and the interfaces among the prior variants still remain.A lot of twins will appear in martensite under enormous deformation,and the twin plane is(001) phane of martensite lattice.The dislocations has also been observed in some regions.In this case,the martensite will lose its thermoelasticitv and the shape memory effect will be damaged.展开更多
Different structure models of a long-period ordered phase in Fe-C martenstie formed during aging have been checked by computer simulation of electron diffraction(ED) patterns based on these models.The results showed t...Different structure models of a long-period ordered phase in Fe-C martenstie formed during aging have been checked by computer simulation of electron diffraction(ED) patterns based on these models.The results showed that the simulated ED pattern of γ'-FexC(Ⅱ) model proposed by the present authors is in good agreement with experimentally observed ED pattern.It was also confirmed that the incommensurate superperiod stems from the coexistence of several γ'-Fe_xC(H) phases with different superperiods.The Fe(144)C(24)(Fe6C) model proposed by Uwakweh et al.generated ED patterns remarkably different from the experimental ones.展开更多
The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays t...The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ΣBOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.展开更多
The electronic structures,magnetic properties,and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe,Ni,Cu)were investigated by the first-principles calculations based on density-functional th...The electronic structures,magnetic properties,and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe,Ni,Cu)were investigated by the first-principles calculations based on density-functional theory.The results indicate that all three alloys are stabilized in the ferromagnetic L21-type structure.The total magnetic moments mainly come from Mn and Fe atoms for Cd2MnFe,whereas,only from Mn atoms for Cd2MnNi and Cd2MnCu.The magnetic moment at equilibrium lattice constant of Cd2MnFe(6.36μB)is obviously larger than that of Cd2MnNi(3.95μB)and Cd2MnCu(3.82μB).The large negative energy differences(ΔE)between martensite and austenite in Cd2MnFe and Cd2MnNi under tetragonal distortion and different uniform strains indicate the possible occurrence of ferromagnetic martensitic transformation(FMMT).The minimum total energies in martensitic phase are located with the c/a ratios of 1.41 and 1.33 for Cd2MnFe and Cd2MnNi,respectively.The total moments in martensitic state still maintain large values compared with those in cubic state.The study is useful to find the new all-d-metal Heusler alloys with FMMT.展开更多
Titanium64 has characteristics well sought after for applications in demanding environments. In general, due to titanium64’s high performance, it is a material which requires careful and well considered machining app...Titanium64 has characteristics well sought after for applications in demanding environments. In general, due to titanium64’s high performance, it is a material which requires careful and well considered machining approaches in order to optimize the process. Nano-structured bainitic steel whilst having different application bases does none the less have similar machining and machinability short comes as that of titanium64. These similar characteristics have been compared and contrasted in this research study using parameters including cutting force, surface texture and metallography. The results tend to indicate that titanium64 has a poorer machinability characteristics compared to nano-structured bainitic steel. However, in terms of achieving greater surface texture characteristics, the nano-structured bainitic steel exhibited an enhanced capacity.展开更多
The quantitative analysis of substructure in the martensite/bainite mixed structure, which is obtained from low-carbon NiCrMoV steels under different cooling conditions, was made by means of optical microscope (OM),...The quantitative analysis of substructure in the martensite/bainite mixed structure, which is obtained from low-carbon NiCrMoV steels under different cooling conditions, was made by means of optical microscope (OM), scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and transmission electron microscope (TEM), in order to research the effect on toughness. The test results indicate that the toughness of the steel is en- hanced with the decrease in the packet and block size under the condition of the same prior austenite grain size mixed with different ratios of martensite and bainite while the lath width is about 0.38μm. The calculation shows that both the packet and block boundaries have the same hindering effect on crack extension. Furthermore, the effect of the block width on impact energy is much larger than that of the packet. Therefore, the block can be used as microstruc- tural substructure to affect the toughness in low-carbon martensite steels, suggesting that the block size is "the effective grain size" for controlling toughness.展开更多
基金supported by the National Key Fundamental Research and Development Program of China (No.2004CB619105)
文摘The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.
文摘This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel.
文摘The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness have been investigated.The thermal and mechanical stabilities of the retained austenite were analyzed.Furthermore the effects of retained austenite on the mechanical properties of the steel were studied.The results show that the morphology and amount of retained austenite vary with silicon content in the steel.Retained austenite with high stability was responsible for the simultaneous increase in strength and toughness of the steel.The duplex microstructure of martensite and abnormal lower bainite of the steel with the maximum silicon content exhibits a relatively good strength-toughness combination.
文摘Fatigue crack propagation rate,da/dN,and threshold stress intensity range,ΔK_(th),of steel 20CrMnMo containing low carbon martensite or low carbon martensite/bainite(LCM/B) duplex structure,obtained by oil quenching and austempered at 360℃,have been measured using specimens under four-point bending.Observation was also made of the crack path and fracture morphology with relation to microstructure.The formation of LCM/B duplex structure,which caused by 20% lower bainite after short-time isothermal treatment,may re- markably increase ΔK_(th)and considerably decrease da/dN.The effect of microstructure on da/dN and ΔK_(th)was discussed with the emphasis on the crack propagation path.
基金Project (2011AA030101) supported by the High-tech Research and Development Program of China
文摘The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching after solution treatment between 960-1000 ℃. The antiphase boundary (APB)-like structure was observed clearly in the α" martensite plates. The APB-like contrasts exist along the (001) and (020) planes of α" martensite. This APB-like structure of α" martensite was identified as a kind of stacking fault with an APB-like morphology induced by martensitic transformation and not by order/disorder transition. During martensitic transformation, martensitic domains nucleate and grow, eventually encounter each other, resulting in the formation of the APBdike contrast.
基金the financial supports from the National Natural Science Foundation of China(NSFC)(Nos.51874216 and 51704217)the Major Projects of Technology Innovation of Hubei Province,China(No.2017AAA116)
文摘The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.
文摘By continuous quenching process, the effect of austenitizing temperature and time on the structure and hardness of bainiteductile cast iron was studied. It was found that (l) low austenitizing temperature would result in scrap ferrite existing in matrix, whichreduces the macro-hardness of bainite ductile cast iron; (2) high austenitizing temperature would make carbide decomposed, which alsoinduces the macro-hardness of bainite cast iron, and (3) austenitizing time has little effect on the structure of bainite ductile cast iron, butas it increases, the macro-hardness ofbainite ductile cast iron and micro-hardness of bainite increases. To the ductile cast iron, as a result,the suitable austenitizing temperature and time are recommended as 880 and 120 min respectively.
基金supported by the National Key Project of Fundamental Research of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant No.50831006)+1 种基金the Program for New Century Excellent Talents in University(Grant No.NCET-11-0156)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.
基金Science Council of Shandong Province!under Grant No.89F0274
文摘The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.
文摘The crystal structure and thermal stability of the martensite in Cu 24Al 3Mn (mole fraction, %) alloy were studied by X ray diffraction, electron diffraction, V - t curve measurement. The 18R martensite with fairly perfect long range order can be obtained by water quenching the alloy. The atoms distribution on the basal plane of the martensite is as follows: Ⅰ, 3/25 Mn+22/25 Cu; Ⅱ, 3/25 Al+22/25 Cu; Ⅲ, 18/25 Al+7/25 Cu, correspondingly, the parent phase may have Heusler structure. From the electron diffraction result, the crystal structure is determined to be of a modified 18R type but closely approaching orthorhombic 18R type, its lattice parameters are determined to be a = 0.447?4?nm, b = 0.522?9?nm, c = 3.815?nm and β =89.6° from the X ray diffraction results. The obtained alloy has a higher thermal stability than that of the conventional Cu Zn Al alloy.
文摘The strain fatigue,impact fatigue and rotation beam fatigue behaviour of granular bainitic structure has been studied.The results show that the strain fatigue properties and the impact fatigue properties of granular bainite are superior to that of tempered martensite under the condition that the ultimate tensile strength is equal.The impact.fatigue life increases with in- creasing amount of granular bainite,because the M-A islands might retard the propagation of fatigue crack.The rotation beam fatigue properties of granular hainite are similar to that of tempered martensite.The relationship between.fatigue limit S_f,yield strength σ_y and frac- ture strength S_k may be expressed as S_f=4.651+0.1411(σ_y+S_k)
基金Item Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.
文摘In the present paper the morphologies of sur- face structures and the anomalous contrast of β_1 phase accompanying with the formation of bainite plate in the Cu-Zn-Al shape memory alloy have been investigated in detail by the transmission elec- tron microscopy and diffraction.The experimental results have proved that the extra diffraction and anomalous contrast results from the surface martensite formed on the β_1 phase.However,the crystal structure and morphology of the surface martensite are varied at different stage of bainite formation.The observation of interfacial disloca- tion structure of bainite/β_1 matrix reveals that there is a large strain in the bainite transformation of β CuZnAl alloy.Based on the experiment results the formation of surface martensite and bainitic transformation were discussed.
文摘The morphology and substructure of mixed martensites in ferrous alloys have been examined by using optical and transmission electron microscope. The results indicated that the main formation se- quence of martensitic morphology was butterfly→ plate→lath,with decreasing forming temperatures when the plastic accommodation takes place in the parent phase,which is affected by the transforma- tion strain fiélds.It was shown that the martensite morphology is not only decided by the forming temperature alone,but also by the dislocation struc- ture in austenite before the transformation.
文摘The transmission electron microscopy has been used to investigate the fine structure variation of 18R martensite under deformation in a polycrvstalline CuZnAl shape memory alloys.It has been found that the strain is gabined by the reorientation of martensite variants in the ini- tial deformation stage.In addition to the result of optical microscopy studies,however,the reorientation is often incomplete and the interfaces among the prior variants still remain.A lot of twins will appear in martensite under enormous deformation,and the twin plane is(001) phane of martensite lattice.The dislocations has also been observed in some regions.In this case,the martensite will lose its thermoelasticitv and the shape memory effect will be damaged.
文摘Different structure models of a long-period ordered phase in Fe-C martenstie formed during aging have been checked by computer simulation of electron diffraction(ED) patterns based on these models.The results showed that the simulated ED pattern of γ'-FexC(Ⅱ) model proposed by the present authors is in good agreement with experimentally observed ED pattern.It was also confirmed that the incommensurate superperiod stems from the coexistence of several γ'-Fe_xC(H) phases with different superperiods.The Fe(144)C(24)(Fe6C) model proposed by Uwakweh et al.generated ED patterns remarkably different from the experimental ones.
文摘The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ΣBOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.
基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ19E010006)the National Natural Science Foundation of China(Grant Nos.51671048 and 91963123)+1 种基金the Ten Thousand Talents Plan of Zhejiang Province,China(Grant No.2018R52003)the Fundamental Research Funds for the Provincial University of Zhejiang Province,China(Grant No.GK199900X022).
文摘The electronic structures,magnetic properties,and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe,Ni,Cu)were investigated by the first-principles calculations based on density-functional theory.The results indicate that all three alloys are stabilized in the ferromagnetic L21-type structure.The total magnetic moments mainly come from Mn and Fe atoms for Cd2MnFe,whereas,only from Mn atoms for Cd2MnNi and Cd2MnCu.The magnetic moment at equilibrium lattice constant of Cd2MnFe(6.36μB)is obviously larger than that of Cd2MnNi(3.95μB)and Cd2MnCu(3.82μB).The large negative energy differences(ΔE)between martensite and austenite in Cd2MnFe and Cd2MnNi under tetragonal distortion and different uniform strains indicate the possible occurrence of ferromagnetic martensitic transformation(FMMT).The minimum total energies in martensitic phase are located with the c/a ratios of 1.41 and 1.33 for Cd2MnFe and Cd2MnNi,respectively.The total moments in martensitic state still maintain large values compared with those in cubic state.The study is useful to find the new all-d-metal Heusler alloys with FMMT.
文摘Titanium64 has characteristics well sought after for applications in demanding environments. In general, due to titanium64’s high performance, it is a material which requires careful and well considered machining approaches in order to optimize the process. Nano-structured bainitic steel whilst having different application bases does none the less have similar machining and machinability short comes as that of titanium64. These similar characteristics have been compared and contrasted in this research study using parameters including cutting force, surface texture and metallography. The results tend to indicate that titanium64 has a poorer machinability characteristics compared to nano-structured bainitic steel. However, in terms of achieving greater surface texture characteristics, the nano-structured bainitic steel exhibited an enhanced capacity.
文摘The quantitative analysis of substructure in the martensite/bainite mixed structure, which is obtained from low-carbon NiCrMoV steels under different cooling conditions, was made by means of optical microscope (OM), scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and transmission electron microscope (TEM), in order to research the effect on toughness. The test results indicate that the toughness of the steel is en- hanced with the decrease in the packet and block size under the condition of the same prior austenite grain size mixed with different ratios of martensite and bainite while the lath width is about 0.38μm. The calculation shows that both the packet and block boundaries have the same hindering effect on crack extension. Furthermore, the effect of the block width on impact energy is much larger than that of the packet. Therefore, the block can be used as microstruc- tural substructure to affect the toughness in low-carbon martensite steels, suggesting that the block size is "the effective grain size" for controlling toughness.