The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous...The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology.展开更多
Based on the Fresnel-Kirchhoff diffraction theory, we build up a Gaussian diffraction model of metal-oxide-type super-resolution near field structure (super-liENS), which can describe far field optical properties. T...Based on the Fresnel-Kirchhoff diffraction theory, we build up a Gaussian diffraction model of metal-oxide-type super-resolution near field structure (super-liENS), which can describe far field optical properties. The spectral contrast induced by refractive index and the structural changes in AgOg, PtOx and PdOz thin films, which are the key functional layers in super-RENS, are studied by using this model. Comparison results indicate that the spectral contrast depends intensively on the laser-induced distribution and change of the refractive index in the metal-oxide films. The readout mechanism of the metal-oxide-type super-RENS optical disc is further clarified. This Gaussian diffraction model can be used as a simple and effective method for choosing proper active materials in super-RENS.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11374313)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11504392)
文摘The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60207005, 60490290, 60507009, and 50672108 the Science and Technology Committee of Shanghai under Grant No 06DJ14007.
文摘Based on the Fresnel-Kirchhoff diffraction theory, we build up a Gaussian diffraction model of metal-oxide-type super-resolution near field structure (super-liENS), which can describe far field optical properties. The spectral contrast induced by refractive index and the structural changes in AgOg, PtOx and PdOz thin films, which are the key functional layers in super-RENS, are studied by using this model. Comparison results indicate that the spectral contrast depends intensively on the laser-induced distribution and change of the refractive index in the metal-oxide films. The readout mechanism of the metal-oxide-type super-RENS optical disc is further clarified. This Gaussian diffraction model can be used as a simple and effective method for choosing proper active materials in super-RENS.