For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
We extend the well-known concept and results for lumped parameters used in the spring-like models for linear materials to Hollomon’s power-law materials.We provide the generalized stiffness and effective mass coeffic...We extend the well-known concept and results for lumped parameters used in the spring-like models for linear materials to Hollomon’s power-law materials.We provide the generalized stiffness and effective mass coefficients for the power-law Euler-Bernoulli beams under standard geometric and load conditions.In particular,our mass-spring lumped parameter models reduce to the classical models when Hollomon’s law reduces to Hooke’s law.Since there are no known solutions to the dynamic power-law beam equations,solutions to our mass lumped models are compared to the low-order Galerkin approximations in the case of cantilever beams with circular and rectangular cross-sections.展开更多
The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and b...The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and benzoic acid as the transferred substance between water and oil. The results show that, with lance level of 2.1m and the top blowing rate of 25000Nm3/h, the volumetric mass transfer coefficient changes most significantly when the bottom blowing rate ranges from 384 to 540Nm3/h. The volumetric mass transfer coefficient reaches its maximum when the lance level is 2.1m, the top blowing rates is 30000Nm3/h, and the bottom blowing rate is 384Nm3/h with tuyeres located symmetrically at 0.66D of the converter bottom.展开更多
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally inve...The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.展开更多
In the present work, the classical Bethe–Weizs?cker(BW) mass formula with five energy terms is revisited and updated. We use the least-squares adjustments on the binding energy of 2497 different nuclides from the las...In the present work, the classical Bethe–Weizs?cker(BW) mass formula with five energy terms is revisited and updated. We use the least-squares adjustments on the binding energy of 2497 different nuclides from the last update of the atomic mass evaluation,AME2016 published in March 2017, to provide a new set of energy coefficients of the mass formula. The obtained set of formula coefficients allowed us to reproduce most of the experimental values of the binding energies for each nucleus with A ≥50. The comparison between the binding energies provided with updated mass formula and those of AME2016 on the one hand, and those of previous works,on the other hand, yields relative errors that oscillate between less than 0.05% and 1.5%. The revisited BW formula is in very good agreement with the experimental data.展开更多
Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters inclu...Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.展开更多
Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the ...Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the most efficient parameters,which is conventionally determined from boreholes.Such approaches,however,are time-consuming and expensive,offer low data coverage of point measurements,require heavy equipment,and are hardly conducted in steep topographic sites.Hence,borehole approaches cannot assess the subsurface thoroughly for rock mass quality evaluation.Alternatively,use of geophysical methods is non-invasive,rapid and economical.The proposed geophysical approach makes useful empirical correlation between geophysical and geotechnical parameters.We evaluated the rock mass quality via integration between KV measured from the limited boreholes and inverted resistivity obtained from electrical resistivity tomography(ERT).The borehole-ERT correlation provided KV along various geophysical profiles for more detailed 2D/3D(two-/three-dimensional)mapping of rock mass quality.The subsurface was thoroughly evaluated for rock masses with different engineering qualities,including highly weathered rock,semi-weathered rock,and fresh rock.Furthermore,ERT was integrated with induced polarization(IP)to resolve the uncertainty caused by water/clay content.Our results show that the proposed method,compared with the conventional approaches,can reduce the ambiguities caused by inadequate data,and give more accurate insights into the subsurface for rock mass quality evaluation.展开更多
Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A mode...Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.展开更多
In this research gasoil desalting was investigated from mass transfer point of view in an eductor liquid–liquid extraction column(eductor-LLE device).Mass transfer characteristics of the eductor-LLE device were evalu...In this research gasoil desalting was investigated from mass transfer point of view in an eductor liquid–liquid extraction column(eductor-LLE device).Mass transfer characteristics of the eductor-LLE device were evaluated and an empirical correlation was obtained by dimensional analysis of the dispersed phase Sherwood number.The Results showed that the overall mass transfer coefficient of the dispersed phase and extraction efficiency have been increased by increasing Sauter mean diameter(SMD)and decreasing the nozzle diameter from 2 to 1 mm,respectively.The effects of Reynolds number(R_(e)),projection ratio(ratio of the distance between venturi throat and nozzle tip to venturi throat diameter,Rpr),venturi throat area to nozzle area ratio(R_(th-n))and two phases flow rates ratio(R_(Q))on the mass transfer coefficient(K)were determined.According to the results,K increase with increasing Re and RQ and also with decreasing Rpr and R_(th-n).Semi-empirical models of drop formation,rising and coalescence were compared with our proposed empirical model.It was revealed that the present model provided a relatively good fitting for the mass transfer model of drop coalescence.Moreover,experimental data were in better agreement with calculated data with AARE value of 0.085.展开更多
For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(l) ionic liquid is considered in this work as an alternative to the use of molecular volatile so...Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(l) ionic liquid is considered in this work as an alternative to the use of molecular volatile solvents such as aromatic hydrocarbons. The present work evaluates the CO mass transfer rates from the gas phase to the ionic liquid solutions in the absence of chemical reaction. To that end, carbon dioxide was employed as an inert model gas and absorption experiments were performed to assess the influence of different process variables in a batch reactor with fiat gas-liquid interface. The experimental mass transfer coefficients showed significant var- iation with temperature, (3.4-10.9) × 10^-7 m·s^-1 between 293 and 313 K; stirring speed, (10.2- 33.1)× 10^-7 m.s 1 between 100 and 300 r·min^-1; and concentration of copper(1), (6.6-10.2) × 10^-7 m·s^-1 between 0.25 and 2 mol· L^- 1. In addition, the mass transfer coefficients were eventually found to follow a poten- tial proportionality of the type kL ∝μ^-0.5 and the dimensionless correlation that makes the estimation of the mass transfer coefficients possible in the studied range of process variables was obtained: Sh=10^-2.64 Re^1.07 , Sc^0.75,These results constitute the first step in the kinetic analysis of the reaction between CO and imidazolium chlorocuprate(I) ionic liquid that determines the design of the separation units.展开更多
The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass...The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.展开更多
The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0....The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.展开更多
Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent ...Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffusion mechanism of particles. The simulation results are consistent with published experimental data. Core-annulus solids mass transfer coefficient decreases with increasing particle size, particle density and solids circulation rate,but generally increases with increasing superficial gas velocity and riser diameter. In the upper dilute region of gas-solid fluidized bed risers, core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.展开更多
In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this s...In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.展开更多
In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and prev...In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.展开更多
Vortex-shedding flow induced by the vertical oscillation of a cylinder with bottom-attached disks of different diameter ratio Dd/Dc and thickness ratio td/Dc is studied by a 3D (three-dimensional) numerical model de...Vortex-shedding flow induced by the vertical oscillation of a cylinder with bottom-attached disks of different diameter ratio Dd/Dc and thickness ratio td/Dc is studied by a 3D (three-dimensional) numerical model developed in this paper, and compared with the results obtained through 2D (two-dimensional) numerical model. The high-order upwind scheme is applied to stabilize the computation, and convergence is accelerated by the multi-grid method. Qualitative and quantitative analyses of the differences between the 2D and 3D simulation results reveal the 3D effect on the flow field characteristics and hydrodynamic coefficients of the vertically oscillating cylinder with a bottom-attached disk. The 3D effect on the fluid field is mainly reflected in the significance of three vortex-shedding patterns: ωx has a greater effect on the flow fields around the sharp edges relative to the vortices generated in the 2D simulation. In the slice along the axial orientation, the vortex effect of ωy along the radial axis is smaller than that of ωx along the circumferential direction, indicating the radial effect on the velocity more pronounced than the circumferential effect around the sharp edges of the disk. The rotational interaction ωz of the fluid in the horizontal plane during the heave motion is insignificant. Based on the 2D and 3D simulation results, the turning points that separate the increasing regimes of the added mass coefficient and damping ratio are identified. The dependence of the turning point on the diameter ratio Dd/Dc and thickness ratio td/Dc are discussed in detail.展开更多
Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bi...Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.展开更多
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a...A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.展开更多
Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall ...Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents A1203 or Na20 into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower [Si] heat is much higher than that in the higher [Si] heat. It is concluded that both fluxing agents and lower [Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Fur- thermore, the addition of Na20 could also prevent rephosphorization at the end of the experiment.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
文摘We extend the well-known concept and results for lumped parameters used in the spring-like models for linear materials to Hollomon’s power-law materials.We provide the generalized stiffness and effective mass coefficients for the power-law Euler-Bernoulli beams under standard geometric and load conditions.In particular,our mass-spring lumped parameter models reduce to the classical models when Hollomon’s law reduces to Hooke’s law.Since there are no known solutions to the dynamic power-law beam equations,solutions to our mass lumped models are compared to the low-order Galerkin approximations in the case of cantilever beams with circular and rectangular cross-sections.
文摘The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and benzoic acid as the transferred substance between water and oil. The results show that, with lance level of 2.1m and the top blowing rate of 25000Nm3/h, the volumetric mass transfer coefficient changes most significantly when the bottom blowing rate ranges from 384 to 540Nm3/h. The volumetric mass transfer coefficient reaches its maximum when the lance level is 2.1m, the top blowing rates is 30000Nm3/h, and the bottom blowing rate is 384Nm3/h with tuyeres located symmetrically at 0.66D of the converter bottom.
基金the authors appreciate the vice-chancellor of research and technology of the University of Isfahan for supporting this work under Grant No.911401707。
文摘The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.
文摘In the present work, the classical Bethe–Weizs?cker(BW) mass formula with five energy terms is revisited and updated. We use the least-squares adjustments on the binding energy of 2497 different nuclides from the last update of the atomic mass evaluation,AME2016 published in March 2017, to provide a new set of energy coefficients of the mass formula. The obtained set of formula coefficients allowed us to reproduce most of the experimental values of the binding energies for each nucleus with A ≥50. The comparison between the binding energies provided with updated mass formula and those of AME2016 on the one hand, and those of previous works,on the other hand, yields relative errors that oscillate between less than 0.05% and 1.5%. The revisited BW formula is in very good agreement with the experimental data.
文摘Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.
基金supported by Xinjiang Key Laboratory of Geohazards Prevention(Grant No.XKLGP2022K07)Key R&D Program of Xinjiang Uygur Autonomous Region(Grant No.2022B03001-2)the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1305).
文摘Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the most efficient parameters,which is conventionally determined from boreholes.Such approaches,however,are time-consuming and expensive,offer low data coverage of point measurements,require heavy equipment,and are hardly conducted in steep topographic sites.Hence,borehole approaches cannot assess the subsurface thoroughly for rock mass quality evaluation.Alternatively,use of geophysical methods is non-invasive,rapid and economical.The proposed geophysical approach makes useful empirical correlation between geophysical and geotechnical parameters.We evaluated the rock mass quality via integration between KV measured from the limited boreholes and inverted resistivity obtained from electrical resistivity tomography(ERT).The borehole-ERT correlation provided KV along various geophysical profiles for more detailed 2D/3D(two-/three-dimensional)mapping of rock mass quality.The subsurface was thoroughly evaluated for rock masses with different engineering qualities,including highly weathered rock,semi-weathered rock,and fresh rock.Furthermore,ERT was integrated with induced polarization(IP)to resolve the uncertainty caused by water/clay content.Our results show that the proposed method,compared with the conventional approaches,can reduce the ambiguities caused by inadequate data,and give more accurate insights into the subsurface for rock mass quality evaluation.
基金Supported by the National Natural Science Foundation of China.
文摘Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.
文摘In this research gasoil desalting was investigated from mass transfer point of view in an eductor liquid–liquid extraction column(eductor-LLE device).Mass transfer characteristics of the eductor-LLE device were evaluated and an empirical correlation was obtained by dimensional analysis of the dispersed phase Sherwood number.The Results showed that the overall mass transfer coefficient of the dispersed phase and extraction efficiency have been increased by increasing Sauter mean diameter(SMD)and decreasing the nozzle diameter from 2 to 1 mm,respectively.The effects of Reynolds number(R_(e)),projection ratio(ratio of the distance between venturi throat and nozzle tip to venturi throat diameter,Rpr),venturi throat area to nozzle area ratio(R_(th-n))and two phases flow rates ratio(R_(Q))on the mass transfer coefficient(K)were determined.According to the results,K increase with increasing Re and RQ and also with decreasing Rpr and R_(th-n).Semi-empirical models of drop formation,rising and coalescence were compared with our proposed empirical model.It was revealed that the present model provided a relatively good fitting for the mass transfer model of drop coalescence.Moreover,experimental data were in better agreement with calculated data with AARE value of 0.085.
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
基金the projects ENE2010-15585 and CTQ2012-31639the FPI postgraduate research grant(BES-2011-046279)
文摘Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(l) ionic liquid is considered in this work as an alternative to the use of molecular volatile solvents such as aromatic hydrocarbons. The present work evaluates the CO mass transfer rates from the gas phase to the ionic liquid solutions in the absence of chemical reaction. To that end, carbon dioxide was employed as an inert model gas and absorption experiments were performed to assess the influence of different process variables in a batch reactor with fiat gas-liquid interface. The experimental mass transfer coefficients showed significant var- iation with temperature, (3.4-10.9) × 10^-7 m·s^-1 between 293 and 313 K; stirring speed, (10.2- 33.1)× 10^-7 m.s 1 between 100 and 300 r·min^-1; and concentration of copper(1), (6.6-10.2) × 10^-7 m·s^-1 between 0.25 and 2 mol· L^- 1. In addition, the mass transfer coefficients were eventually found to follow a poten- tial proportionality of the type kL ∝μ^-0.5 and the dimensionless correlation that makes the estimation of the mass transfer coefficients possible in the studied range of process variables was obtained: Sh=10^-2.64 Re^1.07 , Sc^0.75,These results constitute the first step in the kinetic analysis of the reaction between CO and imidazolium chlorocuprate(I) ionic liquid that determines the design of the separation units.
文摘The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.
文摘The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.
文摘Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffusion mechanism of particles. The simulation results are consistent with published experimental data. Core-annulus solids mass transfer coefficient decreases with increasing particle size, particle density and solids circulation rate,but generally increases with increasing superficial gas velocity and riser diameter. In the upper dilute region of gas-solid fluidized bed risers, core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.
基金financially supported by the National Natural Science Foundation of China(41877240)National Key Research and Development Program of China(2018YFC1802300)Scientific Research Foundation of Graduate School of Southeast University(YBPY2154).
文摘In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.
文摘In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51239007 and 51179077)the Sino-UK Higher Education Research Partnership for Ph.D.Studies
文摘Vortex-shedding flow induced by the vertical oscillation of a cylinder with bottom-attached disks of different diameter ratio Dd/Dc and thickness ratio td/Dc is studied by a 3D (three-dimensional) numerical model developed in this paper, and compared with the results obtained through 2D (two-dimensional) numerical model. The high-order upwind scheme is applied to stabilize the computation, and convergence is accelerated by the multi-grid method. Qualitative and quantitative analyses of the differences between the 2D and 3D simulation results reveal the 3D effect on the flow field characteristics and hydrodynamic coefficients of the vertically oscillating cylinder with a bottom-attached disk. The 3D effect on the fluid field is mainly reflected in the significance of three vortex-shedding patterns: ωx has a greater effect on the flow fields around the sharp edges relative to the vortices generated in the 2D simulation. In the slice along the axial orientation, the vortex effect of ωy along the radial axis is smaller than that of ωx along the circumferential direction, indicating the radial effect on the velocity more pronounced than the circumferential effect around the sharp edges of the disk. The rotational interaction ωz of the fluid in the horizontal plane during the heave motion is insignificant. Based on the 2D and 3D simulation results, the turning points that separate the increasing regimes of the added mass coefficient and damping ratio are identified. The dependence of the turning point on the diameter ratio Dd/Dc and thickness ratio td/Dc are discussed in detail.
文摘Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
基金financially supported by the National Natural Science Foundation of China(No.51504018)the China Postdoctoral Science Foundation(2015M580986)the Fundamental Research Funds for the Central Universities(FRF-TP-17-038A2)
文摘A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.
基金financially supported by the Fundamental Research Funds for Central Universities of China (No. CDJZR 14130001)
文摘Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents A1203 or Na20 into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower [Si] heat is much higher than that in the higher [Si] heat. It is concluded that both fluxing agents and lower [Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Fur- thermore, the addition of Na20 could also prevent rephosphorization at the end of the experiment.